
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

Protection

1

Chapter 17: Protection

• Goals of Protection

• Principles of Protection

• Protection Rings

• Domain of Protection

• Access Matrix

• Implementation of Access Matrix

• Revocation of Access Rights

• Role-based Access Control

• Mandatory Access Control (MAC)

• Capability-Based Systems

• Other Protection Implementation Methods

• Language-based Protection

Objectives

• Discuss the goals and principles of
protection in a modern computer system

• Explain how protection domains combined
with an access matrix are used to specify
the resources a process may access

• Examine capability and language-based
protection systems

• Describe how protection mechanisms can
mitigate system attacks

Goals of Protection

• In one protection model, computer consists
of a collection of objects, hardware or
software

• Each object has a unique name and can be
accessed through a well-defined set of
operations

• Protection problem - ensure that each
object is accessed correctly and only by
those processes that are allowed to do so

Principles of Protection

• Guiding principle – principle of least privilege
• Programs, users and systems should be given just

enough privileges to perform their tasks
• Properly set permissions can limit damage if entity

has a bug, gets abused
• Can be static (during life of system, during life of

process)
• Or dynamic (changed by process as needed) –

domain switching, privilege escalation
• Compartmentalization a derivative concept

regarding access to data
• Process of protecting each individual system

component through the use of specific permissions
and access restrictions

Principles of Protection (Cont.)

• Must consider “grain” aspect
• Rough-grained privilege management easier, simpler,

but least privilege now done in large chunks
• For example, traditional Unix processes either have abilities

of the associated user, or of root

• Fine-grained management more complex, more
overhead, but more protective
• File ACL lists, RBAC

• Domain can be user, process, procedure

• Audit trail – recording all protection-orientated
activities, important to understanding what
happened, why, and catching things that shouldn’t

• No single principle is a panacea for security
vulnerabilities – need defense in depth

Protection Rings

• Components ordered by amount of privilege
and protected from each other
• For example, the kernel is in one ring and user

applications in another
• This privilege separation requires hardware

support
• Gates used to transfer between levels, for example

the syscall Intel instruction
• Also traps and interrupts
• Hypervisors introduced the need for yet another

ring
• ARMv7 processors added TrustZone(TZ) ring to

protect crypto functions with access via new
Secure Monitor Call (SMC) instruction
• Protecting NFC secure element and crypto keys from

even the kernel

Protection Rings (MULTICS)

• Let Di and Dj be any two domain rings

• If j < I Di Dj

Android use of TrustZone

ARM CPU Architecture

Domain of Protection

• Rings of protection separate functions into domains and order them hierarchically

• Computer can be treated as processes and objects
• Hardware objects (such as devices) and software objects (such as files, programs, semaphores

• Process for example should only have access to objects it currently requires to complete
its task – the need-to-know principle

• Implementation can be via process operating in a protection domain
• Specifies resources process may access
• Each domain specifies set of objects and types of operations on them
• Ability to execute an operation on an object is an access right

• <object-name, rights-set>

• Domains may share access rights
• Associations can be static or dynamic
• If dynamic, processes can domain switch

Domain Structure

• Access-right = <object-name, rights-set>
where rights-set is a subset of all valid
operations that can be performed on the
object

• Domain = set of access-rights

Domain Implementation (UNIX)

• Domain = user-id

• Domain switch accomplished via file system
• Each file has associated with it a domain bit (setuid bit)
• When file is executed and setuid = on, then user-id is set

to owner of the file being executed
• When execution completes user-id is reset

• Domain switch accomplished via passwords
• su command temporarily switches to another user’s

domain when other domain’s password provided

• Domain switching via commands
• sudo command prefix executes specified command

in another domain (if original domain has privilege or
password given)

Domain Implementation (Android App IDs)

In Android, distinct user IDs are provided on a per-application
basis

When an application is installed, the installd daemon assigns it a
distinct user ID (UID) and group ID (GID), along with a private
data directory (/data/data/<appname>) whose ownership is
granted to this UID/GID combination alone.

Applications on the device enjoy the same level of protection
provided by UNIX systems to separate users

A quick and simple way to provide isolation, security, and
privacy.

The mechanism is extended by modifying the kernel to allow
certain operations (such as networking sockets) only to members
of a particular GID (for example, AID INET, 3003)

A further enhancement by Android is to define certain UIDs as
“isolated,” prevents them from initiating RPC requests to any but
a bare minimum of services

Access Matrix

• View protection as a matrix (access matrix)

• Rows represent domains

• Columns represent objects

• Access(i, j) is the set of operations that a
process executing in Domaini can invoke on Objectj

Use of Access Matrix

• If a process in Domain Di tries to do “op” on
object Oj, then “op” must be in the access
matrix

• User who creates object can define access
column for that object

• Can be expanded to dynamic protection
• Operations to add, delete access rights
• Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)
• control – Di can modify Dj access rights
• transfer – switch from domain Di to Dj

• Copy and Owner applicable to an object
• Control applicable to domain object

Use of Access Matrix (Cont.)

• Access matrix design separates mechanism
from policy
• Mechanism

• Operating system provides access-matrix + rules

• If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced

• Policy
• User dictates policy

• Who can access what object and in what mode

• But doesn’t solve the general confinement
problem

Access Matrix of Figure A with Domains as Objects

Access Matrix with Copy Rights

Access Matrix With Owner Rights

Modified Access Matrix of Figure B

Implementation of Access Matrix

• Generally, a sparse matrix

• Option 1 – Global table
• Store ordered triples <domain, object,
rights-set> in table

• A requested operation M on object Oj within
domain Di -> search table for < Di, Oj, Rk >
• with M ∈ Rk

• But table could be large -> won’t fit in main
memory

• Difficult to group objects (consider an object
that all domains can read)

Implementation of Access Matrix (Cont.)

• Option 2 – Access lists for objects
• Each column implemented as an access list

for one object

• Resulting per-object list consists of ordered
pairs <domain, rights-set> defining
all domains with non-empty set of access
rights for the object

• Easily extended to contain default set -> If M
∈ default set, also allow access

Implementation of Access Matrix (Cont.)

• Each column = Access-control list for one
object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

• Each Row = Capability List (like a key)
For each domain, what operations allowed on
what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

Implementation of Access Matrix (Cont.)

• Option 3 – Capability list for domains

• Instead of object-based, list is domain based

• Capability list for domain is list of objects together with operations allows
on them

• Object represented by its name or address, called a capability

• Execute operation M on object Oj, process requests operation and
specifies capability as parameter

• Possession of capability means access is allowed

• Capability list associated with domain but never directly accessible by
domain

• Rather, protected object, maintained by OS and accessed indirectly

• Like a “secure pointer”

• Idea can be extended up to applications

Implementation of Access Matrix (Cont.)

• Option 4 – Lock-key
• Compromise between access lists and

capability lists

• Each object has list of unique bit patterns,
called locks

• Each domain as list of unique bit patterns
called keys

• Process in a domain can only access object if
domain has key that matches one of the locks

Comparison of Implementations

• Many trade-offs to consider
• Global table is simple, but can be large
• Access lists correspond to needs of users

• Determining set of access rights for domain non-
localized so difficult

• Every access to an object must be checked
• Many objects and access rights -> slow

• Capability lists useful for localizing information
for a given process
• But revocation capabilities can be inefficient

• Lock-key effective and flexible, keys can be
passed freely from domain to domain, easy
revocation

Comparison of Implementations (Cont.)

• Most systems use combination of access
lists and capabilities
• First access to an object -> access list searched

• If allowed, capability created and attached to
process
• Additional accesses need not be checked

• After last access, capability destroyed

• Consider file system with ACLs per file

Revocation of Access Rights

• Various options to remove the access right of
a domain to an object
• Immediate vs. delayed

• Selective vs. general

• Partial vs. total

• Temporary vs. permanent

• Access List – Delete access rights from access
list
• Simple – search access list and remove entry

• Immediate, general or selective, total or partial,
permanent or temporary

Revocation of Access Rights (Cont.)

• Capability List – Scheme required to locate
capability in the system before capability can be
revoked
• Reacquisition – periodic delete, with require and denial if

revoked
• Back-pointers – set of pointers from each object to all

capabilities of that object (Multics)
• Indirection – capability points to global table entry which

points to object – delete entry from global table, not
selective (CAL)

• Keys – unique bits associated with capability, generated
when capability created
• Master key associated with object, key matches master key

for access
• Revocation – create new master key
• Policy decision of who can create and modify keys – object

owner or others?

Role-based Access Control

• Protection can be applied to
non-file resources

• Oracle Solaris 10 provides
role-based access control
(RBAC) to implement least
privilege
• Privilege is right to execute

system call or use an option
within a system call

• Can be assigned to processes
• Users assigned roles granting

access to privileges and
programs
• Enable role via password to

gain its privileges
• Similar to access matrix

Mandatory Access Control (MAC)

• Operating systems traditionally had discretionary access
control (DAC) to limit access to files and other objects (for
example UNIX file permissions and Windows access control
lists (ACLs))
• Discretionary is a weakness – users / admins need to do

something to increase protection

• Stronger form is mandatory access control, which even
root user can’t circumvent
• Makes resources inaccessible except to their intended owners
• Modern systems implement both MAC and DAC, with MAC usually

a more secure, optional configuration (Trusted Solaris, TrustedBSD
(used in macOS), SELinux), Windows Vista MAC)

• At its heart, labels assigned to objects and subjects
(including processes)
• When a subject requests access to an object, policy checked to

determine whether or not a given label-holding subject is allowed
to perform the action on the object

Capability-Based Systems

• Hydra and CAP were first capability-based systems

• Now included in Linux, Android and others, based on POSIX.1e (that never
became a standard)

• Essentially slices up root powers into distinct areas, each represented by a
bitmap bit

• Fine grain control over privileged operations can be achieved by setting or
masking the bitmap

• Three sets of bitmaps – permitted, effective, and inheritable

• Can apply per process or per thread

• Once revoked, cannot be reacquired

• Process or thread starts with all privs, voluntarily decreases set
during execution

• Essentially a direct implementation of the principle of least privilege

• An improvement over root having all privileges but inflexible (adding new
privilege difficult, etc)

Capabilities in POSIX.1e

Other Protection Improvement
Methods
• System integrity protection (SIP)

• Introduced by Apple in macOS 10.11
• Restricts access to system files and resources,

even by root
• Uses extended file attribs to mark a binary to

restrict changes, disable debugging and
scrutinizing

• Also, only code-signed kernel extensions allowed
and configurably only code-signed apps

• System-call filtering
• Like a firewall, for system calls
• Can also be deeper –inspecting all system call

arguments
• Linux implements via SECCOMP-BPF (Berkeley

packet filtering)

Other Protection Improvement Methods (cont.)

• Sandboxing
• Running process in limited environment
• Impose set of irremovable restrictions early in

startup of process (before main())
• Process then unable to access any resources

beyond its allowed set
• Java and .net implement at a virtual machine

level
• Other systems use MAC to implement
• Apple was an early adopter, from macOS 10.5’s

“seatbelt” feature
• Dynamic profiles written in the Scheme language,

managing system calls even at the argument level
• Apple now does SIP, a system-wide platform profile

Other Protection Improvement Methods (cont.)

• Code signing allows a system to trust a
program or script by using crypto hash to
have the developer sign the executable
• So code as it was compiled by the author

• If the code is changed, signature invalid and
(some) systems disable execution

• Can also be used to disable old programs by
the operating system vendor (such as Apple)
cosigning apps, and then invaliding those
signatures so the code will no longer run

Language-Based Protection

• Specification of protection in a
programming language allows the high-
level description of policies for the
allocation and use of resources

• Language implementation can provide
software for protection enforcement
when automatic hardware-supported
checking is unavailable

• Interpret protection specifications to
generate calls on whatever protection
system is provided by the hardware and
the operating system

Protection in Java 2

• Protection is handled by the Java Virtual Machine
(JVM)

• A class is assigned a protection domain when it is
loaded by the JVM

• The protection domain indicates what operations
the class can (and cannot) perform

• If a library method is invoked that performs a
privileged operation, the stack is inspected to
ensure the operation can be performed by the
library

• Generally, Java’s load-time and run-time checks
enforce type safety

• Classes effectively encapsulate and protect data
and methods from other classes

Stack Inspection

