Introduction to Parallel Computing (CMSC416 / CMSC818X)

Abhinav Bhatele, Department of Computer Science

Announcements

- Assignment I is due on Oct II II:59 pm
- Assignment 2 has been posted and is due on Oct 17 11:59 pm

Matrix multiplication

```
for (i=0; i<M; i++)
for (j=0; j<N; j++)
for (k=0; k<L; k++)
C[i][j] += A[i][k]*B[k][j];</pre>
```


https://en.wikipedia.org/wiki/Matrix_multiplication

Matrix multiplication

```
for (i=0; i<M; i++)
for (j=0; j<N; j++)
for (k=0; k<L; k++)
C[i][j] += A[i][k]*B[k][j];</pre>
```

Any performance issues for large arrays?

https://en.wikipedia.org/wiki/Matrix_multiplication

Blocking to improve cache performance

- Create smaller blocks that fit in cache: leads to cache reuse
- $C_{12} = A_{10} * B_{02} + A_{11} * B_{12} + A_{12} * B_{22} + A_{13} * B_{32}$

Parallel matrix multiply

- Store A and B in a distributed manner
- Communication between processes to get the right sub-matrices to each process
- Each process computes a portion of C

0	I	2	3
4	5	6	7
8	9	10	ΙΙ
12	13	14	15

	A ₀₀	A ₀₁	A ₀₂	A ₀₃
X	A _{I0}	A _{II}	A ₁₂	A ₁₃
	A ₂₀	A ₂₁	A ₂₂	A ₂₃
	A ₃₀	A ₃₁	A ₃₂	A ₃₃

7	B ₀₀	B ₀₁	B ₀₂	B ₀₃
	B ₁₀	B _{II}	B ₁₂	B ₁₃
	B ₂₀	B ₂₁	B ₂₂	B ₂₃
	B ₃₀	B ₃₁	B ₃₂	B ₃₃

2D process grid

(r			
0		2	3
4	5	6	7
8	9	10	11
12	13	14	15

2D process grid

Initial skew

t			
0	I	2	3
4	5	6	7
8	9	10	ΙΙ
12	13	14	15

2D process grid

Initial skew

G			
0		2	3
4	5	6	7
8	9	10	11
12	13	14	15

2D process grid

Shift-by-I

Agarwal's 3D matrix multiply

Copy A to all i-k planes and B to all j-k planes

	9	10	11
	12	13	14
3D process grid	15	16	17

			S
0	I	2	
3	4	5	
6	7	8	

Agarwal's 3D matrix multiply

- Perform a single matrix multiply to calculate partial C
- Allreduce along i-j planes to calculate final result

Communication algorithms

- Reduction
- All-to-all

Types of reduction

- Scalar reduction: every process contributes one number
 - Perform some commutative associate operation
- Vector reduction: every process contributes an array of numbers

• Naive algorithm: every process sends to the root

- Naive algorithm: every process sends to the root
- Spanning tree: organize processes in a k-ary tree

- Naive algorithm: every process sends to the root
- Spanning tree: organize processes in a k-ary tree
- Start at leaves and send to parents
- Intermediate nodes wait to receive data from all their children

- Naive algorithm: every process sends to the root
- Spanning tree: organize processes in a k-ary tree
- Start at leaves and send to parents
- Intermediate nodes wait to receive data from all their children
- Number of phases: logkp

All-to-all

- Each process sends a distinct message to every other process
- Naive algorithm: every process sends the data pair-wise to all other processes

https://www.codeproject.com/Articles/896437/A-Gentle-Introduction-to-the-Message-Passing-Inter

Virtual topology: 2D mesh

- Phase I: every process sends to its row neighbors
- Phase 2: every process sends to column neighbors

Virtual topology: hypercube

- Hypercube is an n-dimensional analog of a square (n=2) and cube (n=3)
- Special case of k-ary d-dimensional mesh

https://en.wikipedia.org/wiki/Hypercube

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu