
CMSC 417 Computer Networks Fall 2022

Programming Assignment 4

Assigned: November 2 Due: November 17, 11:59:59 PM. Weight: 1.75x

1 Description

For this assignment you will work in groups of two, which you may form yourselves. When you
have established your group, one member must send an email to the ALL the TAs (CC’ing other
group member) which includes the full names and directory ID of all members. The email subject
should be ”[cmsc417] assignment4 group”. We will create a new Git repository for your group, and
reply with information on how to access it.

2 Introduction

In this project, you will implement Chord [1]. To do so, you must read the paper describing the
Chord protocol, algorithms, and implementation, which is available at the following URL:

http://www.cs.berkeley.edu/~istoica/papers/2003/chord-ton.pdf

Chord is a peer-to-peer lookup protocol which enables the mapping of a key (or identifier)
to a peer (or node) in the network. Chord exposes a single function, “lookup”, to higher-layer
applications:

lookup(<Key>) → <Host>

Chord uses local information and communicates with other peers to find the host (IP address and
port) that a given key is mapped to.

Applications may then be built on top of this service that Chord provides. For example, a
distributed hash table (DHT) application may distribute the key-value storage of a hash table
across many peers and support the typical operations (i.e., insert, get, and remove). The DHT
may be implemented on top of Chord by storing the key-value pairs at the node that Chord mapped
to the given key.

3 Protocol

The Chord protocol and algorithms are described in the paper [1]. You should read the paper
to learn about the design of Chord, prior to starting your own implementation. The
implementation in the paper, shown in Figure 5 and Figure 6, is presented as pseudocode. The
pseudocode involves both local and remote function call invocations, determined by the node at
which a function call is invoked. Note that this pseudocode is extended by Section IV.E.3 “Failure
and Replication”, with changes to the ‘stabilize’, ‘closest preceding node’, and ‘find successor’ func-
tion calls. Additionally, there is a new function call ‘get successor list’ hinted at in the description,
which returns a node’s list of successors and is used in the extended function calls.

For this project, you do not need to understand the details of the following portions of the
paper:

1



� Section IV.E.4 “Voluntary Node Departures”
(All node departures will be treated as node failures.)

� Section II “Related Work”

� Section V “Evaluation”

� Section VI “Future Work”

� Section VII “Conclusion”

As discussed in the paper, there are two ways to implement the protocol: iteratively or recur-
sively. Figure 5 in the paper presents the “find successor” function using a recursive implemen-
tation. However, it may be easier to approach it iteratively, since then each node will be able
to respond to any incoming RPCs immediately without blocking to wait on responses from other
nodes. The iterative version of Chord works similarly to iterative lookups in DNS. If you have
further questions on how to implement you can ask in Office Hours or on Piazza.

4 Implementation

The materials repository contains starter code and the README.md within the assignment4 di-
rectory that describes the protobuf structures, command line options, and expected output.

5 Additional Requirements

1. Your code must be submitted as a series of commits that are pushed to the origin/master
branch of your Git repository. We consider your latest commit prior to the due date/time to
represent your submission.

2. You must provide a Makefile that is included along with the code that you commit. We will
run ‘make’ inside the ‘a4’ directory, which must produce a ‘chord’ executable also located in
the ‘a4’ root directory.

3. You must submit code that compiles in the provided Docker container or VM, otherwise your
assignment will not be graded.

4. Your code must be -Wall clean on gcc/g++ in the provided VM, otherwise your assignment
will not be graded. Do not ask the TA for help on (or post to the forum) code that is not
-Wall clean, unless getting rid of the warning is the actual problem.

5. You are not allowed to work with the other teams or to copy code from any source.

References

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakr-
ishnan. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications. Networking,
IEEE/ACM Transactions on, 2003.

2


