
CMSC 420: Fall 2022

CMSC 420: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data structures,
which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent limit
definition for the standard asymptotic forms. Assume that f and g are nonnegative functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) ⪯ g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) ⪰ g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c, ∃n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c, ∃n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c ̸= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑

b

i=a
1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑

n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑

n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1
− 1

c− 1

{

Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑

n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑

n−1
i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =

(n− 1)c(n+1)
− ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n
∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+

1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be analyzed
using the so-called Master Theorem, which states that given constants a > 0, b > 1, and d ≥ 0, the
function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlog

b
a) if d < logb a.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote the
set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken from [m].

A sorting algorithm is stable if it preserves the relative order of equal elements. A sorting algorithm is
in-place if it uses no additional array storage other than the input array (although O(log n) additional
space is allowed for the recursion stack). The comparison-based algorithms (Insertion-, Merge-, Heap-,
and QuickSort) operate under the general assumption that there is a comparator function f(x, y) that
takes two elements x and y and determines whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No
RadixSort Integers [m]k

or [mk]
O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes
MergeSort

Total order O(n log n) O(n)
Yes No

HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place
but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally ordered
domain) can be computed in O(n) time.

Useful Data Structures: All the following data structures use O(n) space to store n objects:

Unordered Dictionary: (by hashing) Insert, delete, and find in O(1) expected time each. (Note
that you can find an element exactly, but you cannot quickly find its predecessor or successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predecessor, succes-
sor, merge, split in O(log n) time each. (Merge means combining the contents of two dictionaries,
where the elements of one dictionary are all smaller than the elements of the other. Split means
splitting a dictionary into two about a given value x, where one dictionary contains all the items
less than or equal to x and the other contains the items greater than x.) Given the location of an
item x in the data structure, it is possible to locate a given element y in time O(log k), where k
is the number of elements between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease/increase-key inO(log n)
time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Supports insert, find-min, decrease-key all in O(1) amortized
time. (That is, a sequence of length m takes O(m) total time.) Extract-min and delete take
O(log n) worst-case time, where n is the number of items in the heap.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint sets and
find the set containing an element in O(log n) time each. A sequence of m operations can be done
in O(α(m,n)) amortized time. That is, the entire sequence can be done in O(m · α(m,n)) time.
(α is the extremely slow growing inverse-Ackerman function.)

CMSC 420: Fall 2022

Programming Assignment 0: Expanding Stack

Overview: This is a start-up project designed to acquaint you with the programming/testing
environment and submission process we will be using this semester. This will involve only
a small bit of data structure design and implementation (but do check out the challenge
problem at the end for extra credit points).

The Expanding Stack: In Lecture 2, we introduced a simple mechanism for implementing an
array-based stack that automatically expands as needed by repeated size-doubling. In this
assignment, you will implement a simple version of this data structure for storing string
objects, called ExpandingStack. This data structure supports the following public functions.

ExpandingStack(int initialCapacity): This creates an empty stack as an array of type
String containing initialCapacity elements and sets top to −1. We assume that
initialCapacity ≥ 1, and if not, it throws an Exception with the error message
“Invalid capacity”.

void push(String x): This pushes the string x onto your stack. If there is not sufficient
space in the current array, this allocates a new array of twice the current capacity, copies
the elements of the old array into this new array, and then makes this new array the
current one. In either case, you can now increment the top and a store x at this position
in your array.

For example, suppose that your current array had capacity 8 and top == 7, meaning
that the array is entirely filled. You would allocate an array of size 16, copy the 8 existing
elements over, and make this new array the current one. You can now increment top to
8, and store x at this index.

String pop(): Assuming that top ≥ 0, this pops the element at index top off the stack,
returning its value and decrementing top. Otherwise, it throws an Exception with the
message “Pop of empty stack”.

String peek(int idx): Assuming that 0 ≤ idx ≤ top, this returns the element at index
top− idx in your array. Thus, peek(0) returns the element at the top of the stack. If
idx is not in this range, it throws an Exception with the message “Peek index out of

range”.

int size(): Returns the number of elements currently in the stack (or equivalently top+1).

int capacity(): Returns the current size of your array.

ArrayList<String> list(): This returns a Java ArrayList whose members are the ele-
ments of the stack, listed from the top of the stack down to the bottom. For exam-
ple, if you started with an empty stack and performed push("cat"); push("dog");

push("pig"), this returns an ArrayList containing ⟨"pig", "dog", "cat"⟩.

What you need to do: We will provide you with two programs that take care of the input and
output (Part0Tester.java and Part0CommandHandler.java). All you need to do is to imple-
ment the above functions. In fact, we will give you a skeleton program, ExpandingStack.java,
with all the function prototypes, and you just need to fill them in.

1

package cmsc420_f22; // Don’t change this line

import java.util.ArrayList;

public class ExpandingStack {

public ExpandingStack(int initialCapacity) throws Exception { ... }

public void push(String x) { ... }

public String pop() throws Exception { ... }

public String peek(int idx) throws Exception { ... }

public int size() { ... }

public int capacity() { ... }

public ArrayList<String> list() { ... }

}

Sample input/output: Here is an example of what the input and output might look like. Let
us assume that the initial capacity is set to 4. Notice that when "frog" is pushed (resulting
in 5 elements in the stack), we allocate a new array with capacity 2 · 4 = 8.

Input: Output:
push:ladybug push(ladybug): successful

list list: ladybug

pop pop: ladybug

list list:

push:cat push(cat): successful

push:dog push(dog): successful

push:pig push(pig): successful

push:cow push(cow): successful

list list: cow pig dog cat

size size: 4

capacity capacity: 4

peek:1 peek(1): pig

peek:-1 peek(-1): Failure due to exception: "Peek index out of range"

push:frog push(frog): successful

list list: frog cow pig dog cat

size size: 5

capacity capacity: 8

What we give you: We will provide you with skeleton code to get you started on the class
Projects page (Part0-Skeleton.zip). This code will handle the input and output and pro-
vide you with the Java template for ExpandingStack. All you need to do is fill in the contents
of this class. Note that directory structure has been set up carefully. You should not alter it
unless you know what you are doing.

Files: Our skeleton code provides the following files, which can be found in the folder “cmsc420 f22”.
Note that all must begin with the statement “package cmsc420 f22”.

Part0Tester.java: This contains the main Java program. It reads input commands from a

2

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

file (by default tests/test01-input.txt) and it writes the output to a file (by default
tests/test01-output.txt). You can alter the name of the input and output files.

▷ You should not modify this except possibly to change the input and/or output file names.
The output is sent to a file in the tests directory, not to the Java console. Also note that
if you use Eclipse, the contents of the File Explorer window are not automatically
updated. You will need to refresh its contents to see the new output file.

We will provide you with a few sample test input files along with the “expected” output
results (e.g., tests/test01-expected.txt). Of course, you should do your own testing.
To check your results, use a difference-checking program like “diff”.

Note that the tester program does not generate output to the console (unless there are
errors). The output is stored in the output file in the tests directory.

Part0CommandHandler.java: This provides the interface between our Part0Tester.java

and your ExpandingStack.java. It invokes the functions in your ExpandingStack class
and outputs the results. It also catches and processes any exceptions.

▷ You should not modify this file.

Requirements: Because this is a very primitive data structure, your implementation should in-
volve similarly primitive data structures. In particular, your stack contents should be stored
in a simple Java array of type String. You should not use any additional Java data types,
such as ArrayList or LinkedList. The only exception is the list operation (which is just
there for debugging and testing purposes), which is allowed to use an ArrayList for storing
its results.

When grading for efficiency, we require that all the operations run in constant time except for
list and push (but only whenever a reallocation occurs). In both of these exceptional cases,
the running time should be O(n), where n is the current number of elements in the stack.

Style and Efficiency: Part of your grade (usually 5%) is based on having clean programming style
and implementing the operations in an efficient manner. We have no formal requirements for
what constitutes good style. Mostly, it involves that your code is clear and understandable
to the grader. The efficiency requirements are mentioned above.

Challenge Problem: (Challenge problems are not graded separately from the assignment. After
final grades have been computed, I may “bump-up” a grade that is slightly below a cutoff
threshold based on these extra points.)

Ignoring the list operation (which is just there for debugging and testing purposes), all the
stack operations run in constant time with the exception of when a push operation results in
the stack overflowing. This operation runs in time proportional to the number of elements
in the stack, which may be arbitrarily large. However, the amortized analysis in class shows
that on average, each operation requires only constant time.

Implement the expanding stack so that all the operations run in constant worst-case time
(irrespective of the number of elements in the stack). Our strict way of enforcing this is that
(ignoring the list operation), your program may not use any looping constructs of any kind.
That is, you may not use for or while loops, and recursive function calls are not allowed.
For example, the following is allowed:

3

A[0] = B[0];

A[1] = B[1];

A[2] = B[2];

But this is not:

for (int i = 0; i < 3; i++) A[i] = B[i];

You are not allowed to cheat by invoking Java’s built-in functions which do copying behind
the scenes (such as ArrayList or java.util.Arrays.copyOf or System.arraycopy.)

Note that there is no need for trickery, but some relaxation to the assignment specifications is
needed. Rather than waiting until the array capacity is exceeded, you are allowed to allocate
additional array storage any time you like, and you may (prematurely) copy elements into
this array prior to the event when the reallocation is actually required. You cannot use any
loops, recursion, or any Java functions to assist you with the copying process.

You may assume that allocating a new array of any size runs in constant time. (This is a
tiny lie, because Java automatically initializes arrays to zero. But you don’t need to rely on
this to solve this problem.)

String[] A = new String[100000]; // this runs in constant time

Also, assigning one array to another (a so-called “shallow copy”) also takes constant time.
But note that this does not copy individual elements. It just results in two variables that
point to the same block of memory.

String[] B = A; // now B and A both point to the same array (constant time)

If you attempt the challenge, please insert a comment at the top of your ExpandingStack.java
file explaining that you did this and briefly (in a few sentences) how you did it:

// I did the challenge problem. Here’s how. ...

package cmsc420_f22;

import java.util.ArrayList;

public class ExpandingStack {

...

}

4

CMSC 420: Fall 2022

Programming Assignment 1: Leftist Heaps

Overview: In this programming assignment you will implement a leftist heap, the mergeable heap
structure presented in Lecture 5. Your implementation will support all the basic functions
of a mergeable priority queue, namely insert, extract-min, and merge. There will also
be a couple of additional operations including an operation to list the contents of your tree
structure so we can check its correctness.

Operations: You will implement the following public functions. Subject to the efficiency require-
ments described below, you are free to create whatever additional private/protected data and
utility functions as you like.

public LeftistHeap(): This constructs an empty leftist heap. This creates an empty tree
by initializing the root to null (and any other initializations as needed by your particular
implementation).

boolean isEmpty(): Returns true if the current heap has no entries and false otherwise.

void clear(): This resets the structure to its initial state, removing all its existing contents.

void insert(Key x, Value v): This inserts the key-value pair (x, v), where x is the key
and v is the value. (Hint: This can be done with a single call to the utility function
merge, without the need of loops or recursion.)

void mergeWith(LeftistHeap<Key, Value> h2): This merges the current heap with the
heap h2. If h2 is null or it references this same heap (that is, this == h2) then this
operation has no effect. Otherwise, the two heaps are merged, with the current heap
holding the union of both heaps, and h2 becoming an empty heap.

For testing purposes, you should implement merge operation so it produces exactly the
same tree as in the lecture notes.

Key getMinKey(): This returns the smallest key in the heap, but makes no changes to the
heap’s contents or structure. If the heap is empty, it returns null.

Value extractMin(): If the heap is empty, this throws an Exception with the error message
"Empty heap" Otherwise, this locates the entry with the minimum key value, deletes it
from the heap, and returns its associated value. (Hint: This can be done with a single
call to the utility function merge, without the need of loops or recursion.)

ArrayList<String> list(): This operation lists the contents of your tree in the form of a
Java ArrayList of strings. The precise format is important, since we check for correct-
ness by “diff-ing” your strings against ours.

Starting at the root node, visit all the nodes of this tree based on a right-to-left
preorder traversal. In particular, when visiting a node reference u, we do the following:

Null: (u = null) Add the string "[]" to the end of the array-list and return.

Non-null: (u ̸= null) Add the string "(" + u.key + ", " + u.value + ") [" +

u.npl + "]" with the node’s key, value, and npl value to the end of the array-
list. (The symbol “ ” is a space.) Then recursively visit u.right and then u.left.

1

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect05-heaps.pdf

1

IAD

26

0

LAX

42
0

DCA

67

0

JFK

94

0

BWI

88

Figure 1: A leftist heap.

An example of the output on the tree shown in Fig. 1 is shown below.

Index Array-List Contents
0: (26, IAD) [1]

1: (67, DCA) [0]

2: []

3: (94, JFK) [0]

4: []

5: []

6: (42, LAX) [0]

7: []

8: (88, BWI) [0]

9: []

10: []

This format has been chosen for a particular reason. It is very easy to produce a nicely
formatted output based on this. Given the above output, our program will generate the
following structured output. If you rotate it 90◦ clockwise, it looks quite similar to the
tree structure of Fig. 1.

Formatted structure:

| (67, DCA) [0]

| | (94, JFK) [0]

(26, IAD) [1]

| (42, LAX) [0]

| | (88, BWI) [0]

Split: The operations described above follow directly from the code given in class. We would like
you to implement one more operation. This is more challenging. It is worth 10 points. So, if
you do not implement it correctly, you will still get most of the credit for the assignment.

LeftistHeap<Key, Value> split(Key x): Given a key x, this splits the heap into two,
the current one contains all the entries whose keys are less than or equal to x and all
the entries whose keys are strictly greater than x are moved into a new heap, which is
returned.

For the sake of efficiency (and so we can test your output), the process should be im-
plemented as follows. First, we create an empty list (e.g., a Java ArrayList) of nodes.
Next, perform a left-to-right preorder traversal of the current tree. When we visit a
node u, if u.key ≤ x, then leave the node unchanged and apply the traversal recursively,

2

first to the left subtree and then to the right subtree. On the other hand, if u.key > x,
unlink this node from the current tree and append it to the end of the list. By heap
ordering, we know that all the nodes of this subtree will be placed in the new heap.

SFO
119

DCA
167

ATL
148

IAD
142

JFK
194

BWI
188

LAX
126

ORD
173

DFW
155

HKG
162

LHR
146

MIA
122

PEK
164

CDG
127

NRT
199

SEA
113

0 0

0 0

0 0 00 0

01 1 1

12

2
split(126)

SFO
119

DCA
167

ATL
148

IAD
142

JFK
194

BWI
188

LAX
126

ORD
173

DFW
155

HKG
162

LHR
146

MIA
122

PEK
164

CDG
127

NRT
199

SEA
113

0 0 0 0 0 0 0

0 0 01

1

1

12

2

L:

merge

SFO
119

LAX
126

MIA
122

SEA
113

0

00

1

JFK
194

BWI
188

0

0

ATL
148

1

ORD
173

DFW
155

0

0

IAD
142

2

HKG
162

LHR
146

NRT
199

0

0

1

DCA
167

0

PEK
164

0CDG
127

1

fix-up

h2:this:

Figure 2: Splitting a leftist heap. We traverse the tree, unlinking all subtrees whose key value
strictly exceeds x = 126. We merge these trees (from left to right) to form the final result h2.
We traverse the current tree, update the npl values and swap subtrees so that the leftist property
holds.

When this process returns, we have a list L = ⟨u1, . . . , uk⟩ of maximal subtrees whose
nodes are to be placed in the new heap. These are ordered from left to right. We create
a new empty leftist heap, called h2, and we merge each of the elements of L into this
new heap, from left to right. That is, we perform h2.mergeWith(ui) for i = 1, 2, . . . , k.
(Unfortunately, this statement is not kosher because ui is not a heap, it is just a node.
But this is effectively what your program should perform.)

Finally, the original tree has had a number of subtrees removed from it. As a result,
the npl values may be wrong and the leftist property may be violated. (Note that the
other tree, h2 will be valid, because it was formed through merges.) To fix it, perform a
traversal of the tree, compute the proper npl values, and perform left-right child swaps
whenever needed to enforce the leftist property.

Now, both trees have their proper contents and satisfy the required properties. Finally,
return a reference to the leftist heap h2 as the final result.

Note that there are many different valid leftist heaps containing a given set of nodes, and

3

if your implementation differs from the one described above, you will obtain a different
tree and your results will not match ours.

Skeleton Code: As in the earlier assignment, we will provide skeleton code on the class Projects
Page. The only file that you should need to modify is LeftistHeap.java. Remember that you
must use the package “cmsc420 f22” in all your source files in order for the autgrader to work.
As before, we will provide the programs Part1Tester.java and Part1CommandHandler.java

to process input and output. You need only implement the data structure and the functions
listed above. Below is a short summary of the contents of LeftistHeap.java.

Class Structure: The high-level LeftistHeap class structure is presented below. The entries
each consist of a key (priority) and associated value. These can be any two types, but it must
be possible to make comparisons between keys. Our class is parameterized with two types,
Key and Value. We assume that the Key object implements Java’s Comparable interface,
which means that is supports a method compareTo for comparing two such objects. This is
satisfied for all of the Java’s standard number types, such as Integer, Float, and Double as
well as for String.

We recommend that the tree’s node type, called LHNode, is declared to be an inner class.
(But you can implement it anyway you like and give it any name you like.) This way, your
entire source code can be self contained in a single file.

public class LeftistHeap<Key extends Comparable<Key>, Value> {

class LHNode { // recommended node (you may change)

Key key; // key (priority)

Value value; // value (application dependent)

LHNode left, right; // children

int npl; // null path length

// ... any utility functions you want to define

}

// ... any private and protected members you need

public LeftistHeap() { ... } // constructor

public boolean isEmpty() { ... } // is the heap empty?

public void clear() { ... } // clear its contents

public void insert(Key x, Value v) { ... } // insert (x,v)

public void mergeWith(LeftistHeap<Key, Value> h2) { ... } // merge with h2

public Key getMinKey() { ... } // get min key

public Value extractMin() throws Exception { ... } // extract min

public ArrayList<String> list() { ... } // list entries

}

Efficiency requirements: The functions insert, mergeWith, and extractMin should all run in
O(log n) time. The function getMinKey() should run in O(1) time. The function list()

should run in time proportional to the size of the tree. A portion of your grade will depend
on the efficiency of your program.

4

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html
http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

The function split should run in time O(k log n), where k is the number of subtrees that
need to be merged together. (In the worst case, k may be as high as O(n), but your function
should be more efficient when k is small. If you follow the outline that we have given for
split, you should achieve this running time.)

The public interface should match what you are given in the skeleton code. You are free
to add whatever private and protected members (both data and functions, subject to these
efficiency requirements.)

Testing/Grading: Submissions will be made through Gradescope (you need only upload your
modified LeftistHeap.java file). We will be using Gradescope’s autograder and JUnit for
testing and grading your submissions. We will provide some testing data and expected results
along with the skeleton code.

The total point value is 80 points. Of these, 60 points will be for the heap operations excluding
split. Correctly implementing split is worth 10 points, and additional 10 points is reserved
for clean programming style and the above efficiency requirements.

5

CMSC 420: Fall 2022

Programming Assignment 2: Extended kd-Trees

Overview: In this assignment we will implement a variant of the kd-tree data structure, which
will call an extended kd-tree (or XkdTree) to store a set of points in 2-dimensional space. This
data structure involves a number of practical extensions over the standard kd-tree covered in
class. First, the tree will be extended, meaning that we distinguish between internal nodes,
whose only function is to subdivide space, and external nodes (or leaves), where the points are
actually stored. Second, we allow each external node to a small number of points, depending
on a parameter called the bucket size.

Points and Rectangles: The objects to be stored in the trees are 2-dimensional points. To save
you some effort, as part of the skeleton code, we will provide you with a class for 2-dimensional
points, called Point2D.java. This class will provide you with some utility functions, such
as accessing individual coordinates and computing distances. We will also provide you with
a class for storing axis-aligned rectangles, called Rectangle2D.java. This also provides a
number of useful functions, such as testing whether two rectangles are disjoint or whether
one contains the other.

Each point to be stored in the data structure will have an associated value, called its label.
In our case, the label is just a Java String. The resulting object is called a labeled point.
Rather than impose a particular class structure, a labeled point is any class that supports a
Java interface, which we call LabeledPoint2D.java. Here is the interface

public interface LabeledPoint2D {

public double getX(); // get point’s x-coordinate

public double getY(); // get point’s y-coordinate

public double get(int i); // get point’s i-th coordinate (0=x, 1=y)

public Point2D getPoint2D(); // get the point itself (without the label)

public String getLabel(); // get the label (without the point)

}

As the implementer of the data structure, you do not need to worry about the actual objects
being stored, as long as you access the object through the interface functions. Again, all of
these will be provided to you in our skeleton code.

Extended kd-Tree: The XkdTree data structure will be templated with the labeled-point type.
Since this is any object that implements the LabeledPoint2D interface, we will call it LPoint.
Your class declaration (which we will provide you) looks like this:

public class XkdTree<LPoint extends LabeledPoint2D> { /* fill this in */ }

An extended kd-tree involves two modifications to the standard kd-tree as discussed in lecture
(see Fig. 1). First, the tree is extended, meaning that there are two types of nodes, internal
nodes and external nodes. Second, rather than holding a single point, each external node
stores a small set of points, called a bucket. The actual number ranges from 0 up to some

1

maximum number, called the bucket size. The bucket size is specified by the user when the
data structure is first constructed. You should think of it as a small positive integer, ranging
from perhaps 1 up to 10.

ORD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

JFK

SFO

SEA

ATL

JFK (9,3)

LAX (4,2)

y = 5

x = 6

SEA (5,5) BWI (8,8)

DCA (6,7)

x = 3.5

cutDim = 0

cutVal = 3.5

y = 6

ATL (1,5)

IAD (3,4)

cutDim = 1

cutVal = 6

ORD (2,6) DFW (3,8)

SFO (1,9)

y = 8

DFW

DCA

IAD

Figure 1: An example of an extended kd-tree with bucket size 2 and bounding box [0, 10]× [0, 10].

Internal Nodes: Each internal node stores the splitting information, consisting of a cutting

dimension and a cutting value. The cutting dimension (or cutDim) indicates which axis
(0 for x and 1 for y) is used to determine which subtree the points belong to. The cutting
value (or cutVal) indicates where the cut occurs along this axis (see Fig. 1).

For example, if the cutting dimension is 0 (for x) and the cutting value is 5, then a point
p = (px, py) will be put in the left subtree if px < 5 and in the right subtree if px ≥ 5.
Note that the cutting value does not need to be the coordinate of any point in the tree.

External Nodes: Each external node stores a list (e.g., a Java ArrayList) of the labeled
points that lie within this node. The size of this list can vary between zero and the data
structure’s bucket size.

Note that there are no null pointers. Every internal node has two non-null children, which
may be external nodes, and external nodes have no children by definition. What if the tree
is empty? An empty tree is represented setting the root to point to a single external node
whose bucket is empty.

Requirements: Your program will implement the following functions for the XkdTree. While
you can implement the data structure internally however you like (subject to the style and
efficiency requirements given below), the following function signatures should not be altered.
Recall that Point2D is a 2-dimensional point, and an LPoint is any object that implements
LabeledPoint2D.

XkdTree(int bucketSize, Rectangle2D bbox): This constructs a new (empty) XkdTree

with the given bucket size and bounding box.

void clear(): This removes all the entries of the tree.

int size(): Returns the number of points in the tree. For example, for the tree of Fig. 1,
this would return 10. For efficiency, you should store this value in your structure, rather
than compute it by traversing the tree.

2

LPoint find(Point2D pt): Determines whether a point coordinates pt occurs within the
tree, and if so, it returns the associated LPoint. Otherwise, it returns null. (Note that
the query is a standard 2-dimensional point, while the output is a labeled point.)

Unlike standard kd-trees, if pt lies directly on the cutting line (that is, pt[cutDim]
== cutVal), this point might lie in either the left subtree or the right subtree. (In the
standard kd-tree presented in class, it always lies in the right subtree.) Whenever you
visit a node where this is the case, you will need to check both subtrees of an internal
node. If it is found in either, then return the associated labeled point. If it is found in
neither, return null.

void insert(LPoint pt) throws Exception: Inserts a single labeled point pt in the tree.
You may assume that there are no duplicate points, but there may be duplicate coor-
dinate values. Inserting a single point is functionally equivalent to performing a bulk
insertion (see below) with a point set of size one.

void bulkInsert(ArrayList<LPoint> pts) throws Exception: Inserts a set of one or
more labeled points, pts, in the tree. You may assume there are no duplicate points. If
any point lies outside the bounding box, you should throw an Exception with the error
message "Attempt to insert a point outside bounding box".

The insertion is performed as follows. First, we determine the external nodes into which
each of the points falls. (If the point lies on the splitting line of an internal node, insert
it into the right subtree.) Next, consider each of the external node that has received
at least one new point. We merge all the new points together with the existing points
of this node’s bucket. (The built-in Java function addAll is useful for doing this.) If
the number of total number of points is not greater than the bucket size, we are done.
Otherwise, we need to split the bucket, as described next.

Splitting (Big View): The splitting process works as follows. First, we compute the
smallest bounding axis-aligned rectangle containing all the points. (The function
expand, which is provided in Rectangle2D is useful for doing this.) If this rectangle’s
width is greater than or equal to its height, the cutting dimension is set to 0 (that
is, x), and otherwise it is set to 1 (that is, y).
Next, compute the median coordinate along the cutting dimension and partition
the set about this median element into two sets, call them L and R. We create a
new internal node having this cutting dimension and set its cutting value to be
the median coordinate. The elements of L are then recursively inserted into its
left subtree and the elements of R are recursively inserted into the right subtree.
Whenever the number of remaining points is less than or equal to the bucket size,
we create a new external node and store the points there.

Splitting (Details): Care must be taken with the splitting process to avoid issues
that arise when points have duplicate coordinates along the cutting dimension. If
multiple points share the same coordinate value as the median, our usual convention
would put all of these points into the right subtree. But this may result in a highly
imbalanced tree (and even infinite looping if you are not careful). In order to ensure
that the tree is balanced, we want every partition to be as balanced as possible.
Here is how to implement this. (For the sake of uniformity in grading, it is a
requirement that you partition your points in this way.) Once the cutting dimension

3

has been determined, sort the points according to cutting dimension with ties broken
by other coordinate. Suppose that there are n points, and let points[n] denote the
sorted sequence of points (this is probably an ArrayList). Let m = ⌊n/2⌋. If n is
odd, the cutting value is taken to be the unique median element, points[m]. If n
is even, the cutting value is taken to be the mean of the lower and upper medians,
that is, (points[m - 1]+ points[m])/2.
Next, define the left list L to be the sublist consisting of the first m elements.
Let’s use the notation points[i,j] to denote the subarray from points[i] to
points[j-1]. We have L = points[0,m]. Define the right list R to be the sublist
consisting of the last n −m elements, that is, R = points[m,n]. (Note that Java
provides a handy function, called sublist, which can be used to partition the list.)

Sorting Labeled Points: You might be wondering, “Do I need to write my own sorting
function?” (Answer: No, you should never write your own sorting algorithm.)
Java provides a flexible method sorting based on various criteria. There is a built-
in sorting function, Collections.sort. To instruct it how to sort, you provide
it a comparison function. (In the case of partitioning for insertion, this is either
lexicographically by (x, y) or lexicographically by (y, x), depending on the cutting
dimension).
In Java, this is done defining a class that implements the Comparator interface. Such
a class defines a single function, called compare, which compares two objects of the
desired type, and returns a negative, zero, or positive result depending on which
argument is larger. In our case, the objects are labeled points, LPoint. Here is a
brief example on how you might set this up. (A Google search for “Java sorting

with a Comparator” will reveal more examples.)

private class ByXThenY implements Comparator<LPoint> {

public int compare(LPoint pt1, LPoint pt2) {

/* compare pt1 and pt2 lexicographically by x then y */

}

}

private class ByYThenX implements Comparator<LPoint> {

public int compare(LPoint pt1, LPoint pt2) {

/* compare pt1 and pt2 lexicographically by y then x */

}

}

void delete(Point2D pt) throws Exception: (There is no deletion function required for
this assignment.)

ArrayList<String> list(): This operation generates a right-to-left preorder traversal of
the nodes in the tree. (Recall that right-to-left means that we visit the right subtree
before the left.) There is one entry in the list for each node of the tree. The output is
described below:

Internal nodes: Depending on whether the cutting dimension is x or y, this generates
either:

"(x=" + cutVal + ")" or "(y=" + cutVal + ")"

External nodes: This generates list of points in this bucket surrounding by square
brackets, "[" + ... + "]". The “...” is a list of the labeled points in the bucket,

4

each enclosed in curly braces "{" + ... + "}". The points should be sorted by
their string labels (another Comparator!). To output each labeled point, you can
invoke the function point.toString(), which is defined in Airport.java.

For example, here is the result for the tree of Fig. 1. (Take note of spaces.)

(x=3.5)

(y=5.0)

(x=6.0)

[{BWI: (8.0,8.0)} {DCA: (6.0,7.0)}]

[{SEA: (5.0,5.0)}]

[{JFK: (9.0,3.0)} {LAX: (4.0,2.0)}]

(y=6.0)

(y=8.0)

[{DFW: (3.0,8.0)} {SFO: (1.0,9.0)}]

[{ORD: (2.0,6.0)}]

[{ATL: (1.0,5.0)} {IAD: (3.0,4.0)}]

Note that our autograder is sensitive to both case and whitespace. Our command-handler
program will convert this into a formatted tree structure:

Tree structure:

| | | [{BWI: (8.0,8.0)} {DCA: (6.0,7.0)}]

| | (x=6.0)

| | | [{SEA: (5.0,5.0)}]

| (y=5.0)

| | [{JFK: (9.0,3.0)} {LAX: (4.0,2.0)}]

(x=3.5)

| | | [{DFW: (3.0,8.0)} {SFO: (1.0,9.0)}]

| | (y=8.0)

| | | [{ORD: (2.0,6.0)}]

| (y=6.0)

| | [{ATL: (1.0,5.0)} {IAD: (3.0,4.0)}]

LPoint nearestNeighbor(Point2D center): This function is given a query point (regular
point, not a labeled point), and it computes the closest point. If the tree is empty, it
returns null. Otherwise, it returns a reference to the closest LPoint in the kd-tree. For
example, in Fig. 2, the nearest neighbor for center = (6, 4) would return a reference to
the point labeled LAX.

IAD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

DCA

ATL

JFK

SEA

SFO

(6, 4)

22 + 22 = 8

Squared distance

Figure 2: Nearest-neighbor query using squared distances.

5

Computing distances involves computing square roots, which is both unnecessary and
introduces floating-point errors. Instead, you should compute squared Euclidean dis-
tances. (This does not change the identity of the closest point). To assist you, the
Point2D and Rectangle2D classes both provide a utility function distanceSq(Point2D

pt), which computes the squared distance from the current object to point pt.

You should adapt the algorithm given in class to the context of extended trees. In
particular, when visiting an internal node, you should first visit the subtree that is closer
to the query point. Second, you should avoid visiting nodes that you can infer cannot
contain the nearest neighbor. To do this, keep track of the closest point seen so far,
and if node’s cell is farther away from the query point than this, then you should avoid
visiting the node. (Or if you visit it, you should discover this and return immediately.)

If there are multiple nearest neighbors of the query point, you may return any one of
them. (We will engineer the test data so this never happens, so there should be no
variance with our expected outputs.)

Java Node Structure: Because we have two types of nodes, we will need a more sophisticated
node structure. We use good object-oriented principles by defining a parent node type,
called Node. This is abstract, which means that we never create such a node. The actual
nodes are called InternalNode and ExternalNode. (You may name them whatever you like.)
Internal nodes store splitting information (cutting dimension and cutting value) and subtrees.
External nodes stores the bucket, which might be stored as a Java ArrayList.

An example of how this might look is shown below. Since this is all internal, you are free to
implement however you like. But, I would strongly encourage you to use object inheritance,
since this is just good programming style.

public class XkdTree<LPoint extends LabeledPoint2D> {

private abstract class Node { // generic node (purely abstract)

abstract LPoint find(Point2D pt); // find helper - abstract

// ... other helper functions omitted

}

private class InternalNode extends Node {

int cutDim; // the cutting dimension (0 = x, 1 = y)

double cutVal; // the cutting value

Node left, right; // children

LPoint find(Point2D q) { /* find helper for internal nodes */ }

// ... other helper functions omitted

}

private class ExternalNode extends Node {

ArrayList<LPoint> points; // the bucket

LPoint find(Point2D pt) { /* find helper for external nodes */ }

// ... other helper functions omitted

}

6

// ... the rest of the class

}

You might observe that we don’t need to store the node types. This is handled automati-
cally by Java’s inheritance mechanisms. For example, suppose that we want to invoke the
find helper function on the root. Each node type defines its own helper. We then invoke
root.find(pt). If root is an internal node, this invokes the internal-node find helper, and
otherwise it invokes the external-node find helper.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You will need
to fill in the implementation of the XkdTree.java. We also provide some utility classes (e.g.,
Point2D and Rectangle2D). You should not modify any of the other files, but you can add
new files of your own. For example, if you wanted to add additional functions to any of the
classes, such as Point2D or Rectangle2D, it would be preferable to create an entirely new
class (e.g., MyRect2D), which you will upload with your submission.

As with the previous assignment, the package “cmsc420 f22” is required for all your source
files. As usual, we will provide a driver programs (tester and command-handler) for processing
input and output. You should not modify the signature of the public functions, but you are
free to set up the internal structure however you like.

Efficiency requirements: (10% of the final grade) For the sake of partitioning, your bulk insert
function is allowed to sort the points being inserted at each node of the tree. (You are
encouraged to think about more efficient methods. It is obviously inefficient to sort the
points by x at one node, then resort them by y at its child, and then resort them again by
x at its grandchild, but this is the sort of thing that the above construction algorithm will
do.) As mentioned above, you should use Java’s Collection.sort (or some other built-in)
sorting function, as opposed to implementing your own bubble sort algorithm (ugh!) or the
like.

You should have a variable that tracks the number of points in the tree in order to answer
the size operation efficiently.

The nearest-neighbor algorithm should follow the structure given in the lecture notes. Minor
variations are allowed, but your implementation should have the two major features as the
one given in class. First, it should prioritize visiting on the side of the tree that is closer to
the query point, and second, it should not visit subtrees that cannot possibly contain the
nearest neighbor.

Style requirements: (5% of the final grade) Good style is not a major component of the grade,
but you should demonstrate some effort here. Part of the grade is based on clean, elegant
coding. There is no hard rules here, and we will not be picky. If we deduct points, it
will because you used an excessively complicated structure to implement a relatively simple
computation.

The other part is based on commenting. You should have a comment at the top of each file
you submit. This identifies you as the author of the program and provides a short description
of what the program does. For each function (other than the most trivial), you should also
include a comment that describes what the function does, what its parameters are, and

7

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

what it returns. (If you would like to see an example, check out our canonical solution to
Programming Assignment 1, on the class Project Page.)

Testing/Grading: As always, we will provide some sample test data and expected results along
with the skeleton code.

As before, we will be using Gradescope’s autograder for grading your submissions. You only
need to submit your XkdTree.java file. If you created any additional files for utility objects,
you will need to upload those as well.

Challenge Problem: (Remember, challenge problems count for extra-credit points, which are
only taken into consideration after the final cutoffs have been set.)

Implement a deletion operation. This is a public function with the following function decla-
ration:

public void delete(Point2D pt) throws Exception

If the point is not found in the tree, the deletion function throws an Exception with the
error message "Deletion of nonexistent point". Otherwise, it removes this point from
the kd-tree. If the deletion results in an external node becoming empty, and this external
node is not the root, then the tree should be restructured to eliminate this empty external
node. This will induce other changes in the tree. Since an internal node cannot have a null

child, removing an external node results in the removal of its parent. The external node’s
sibling will now be promoted, in the sense that it will become a child of its former grandparent.
Part of the challenge is for you to figure out these changes.

Note that repeated deletions can cause the tree to become unbalanced, but there is no re-
quirement that you do anything about rebalancing the tree. (When we study scapegoat trees,
we’ll see that there is an easy way to do this.)

8

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

CMSC 420: Fall 2022

Programming Assignment 2: Tips on Bulk-Insertion

The principal differences between the data structure in Programming Assignment 2 and the
standard kd-tree are (1) it is based on an extended binary tree (with points stored only in the
leaves, not the internal node), (2) leaf nodes can hold multiple points (based on the bucket size),
(3) points can be inserted “in-bulk” and the splitting process depends on the distribution of these
points.

Bulk-insertion is the most complicate of the operations. In this handout, we will discuss the
tree’s node structure and how to perform bulk insertion with an example.

Node Structure: As mentioned in the assignment handout, the easiest way to implement an
extended binary tree in Java is to use an inner class for the nodes, where there is a parent
class Node and two subclasses InternalNode and ExternalNode derived from this. You should
expect to have helper functions for each of your major operations (e.g., find, bulkInsert,
list, and so on). The internal-node helpers mostly serve to direct points down to the
appropriate external nodes, and the external node helpers do most of the real work.

These are abstract member functions, which means that Java will invoke the appropriate
function depending on the node type. For example, given a node pointer p, the call p.find(q)
will invoke the InternalNode find function if p is an internal node and the ExternalNode

find function if p is an external node. (If you do this properly, you should not need to resort
to checking a node’s type using “instance of”.)

Bulk Insertion: Let’s consider this in the general case, from the perspective of a tree that al-
ready contains some points. Consider the bulk insertion of five points into the tree shown in
Fig. 1(a), and suppose that the bucket size is two.

Helpers: You will have helper functions for both internal and external nodes. Both will take
a list of points (actually, a list of type LPoint) as the argument.

Internal node: The helper for the internal node takes the list of points and splits it into
two sublists consisting of the points to be placed in the left subtree and those for the
right subtree. This is based on the cutting dimension and cutting value. There are many
ways to perform this partition. I believe that the easiest (even if not the fastest) is to
sort the points according to the cutting dimension, determine the index where to split
the list, and then use Java’s subList function to do the actual partition. (Remember
that our convention is that points that fall on the splitting line are placed in the right
subtree.)

For example, in Fig. 1(b), we start by sorting the input along the cutting dimension of
the root, which is x, to obtain the list [SFO, ORD, DFW, SEA, DCA]. We partition this
about x = 5 into the sublists [SFO, ORD, DFW], which we recursively insert to the left
subtree and [SEA, DCA], which we recursively insert to the right.

This continues at all the internal nodes. For example, at the internal node “y = 6” the
list is split based on the y-coordinate into the sublist [SEA], which is sent to the left
subtree and [DCA], which is sent to the right.

1

BWI (8,8)

y = 6

x = 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

ATL

JFK

BWI

ATL (1,5)

JFK (9,4)

SFO (1,9)

ORD (2,6)

DFW (3,8)

SEA (5,5)

DCA (6,7)

bulk-insert:

BWI (8,8)

y = 6

x = 5

ATL (1,5)

JFK (9,4)

SFO (1,9)

ORD (2,6)

DFW (3,8)

x ≥ 5

SEA (5,5) DCA (6,7)

y = 6

x = 5

JFK (9,4) BWI (8,8)

SEA (5,5)

DCA (6,7)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

JFK

BWI

SEA

DCA

SFO

ORD

DFW

ATL

y = 6

x = 5

!!

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

JFK

BWI

SEA

DCA

SFO

ORD

DFW

ATL

SEA (5,5)
JFK (9,4)

DCA (6,7)
BWI (8,8)

y = 7

(a)

(b)

(c)

(d)

x < 5

y ≥ 6y < 6ATL (1,5)

ORD (2,6)

DFW (3,8)

SFO (1,9)

ORD (2,6)
ATL (1,5)

SFO (1,9)
DFW (3,8)

sort by x

sort by y

Figure 1: Bulk-insertion of five points in a tree with bucket size two.

2

External node: When the points arrive at an external node, they are added to the associ-
ated bucket list in this node. If the number of points does not exceed the bucket size,
then we are done. (See the external nodes containing JFK and BWI in Fig. 1(c).)

Otherwise, we need to split this node. To do so, we first compute the bounding box for
all the points, both new and old. (See the shaded blue rectangle in Fig. 1(d).) Depending
on whether it is wider or taller, we split based on the x- or the y-axis. (In this case the
rectangle is taller, so the cutting dimension is set to y (1)).

We sort the points along this dimension and select the median coordinate. (In this case it
is midway between y-coordinates of ORD and DFW, which is y = 7.) We create an internal
node having this cutting dimension and cutting value, and we partition the points to its
left and right subtrees. (In this case, the sublist [ORD, ATL] is sent to the left subtree
and DFW, SFO] is sent to the right. Note that in this case, both lists with within a single
bucket, so we create a single external node for each and we are done.)

3

CMSC 420: Fall 2022

Programming Assignment 3: Capacitated Facility Location

Background: In this assignment, we will ask you to combine the various data structures we
have implemented this semester to solve an important optimization problem from the field
of operations research. This falls within a broad category of optimization problems known
as facility location. To motivate the problem, imagine that you are in charge of deciding
where to put a set of service centers for an organization. For example, this might be the
locations of cell towers in city, the locations of retail outlets like coffee shops, or the locations
of neighborhood facilities like post offices and schools. You want to distribute your service
centers close to where your customers/clients are located, but there is a maximum limit, or
capacity, to the number of clients a given center can serve. It is customary to refer to the
client locations as demand points, since we think of each of them as demanding service which
we need to provide. We don’t want our customers to travel too far, so we wish to keep the
travel distance from each demand point to its assigned service center to be small.

(a) (b)

ATL

JFK

BWI

SEA

LAS

SFO

ORD

DFW

DCA

LAX

IAD

PVD

MCO

LHR

CDG

FRA

BKK

PEK

HKG

NRT

ICN

ATL

JFK

BWI

SEA

LAS

SFO

ORD

DFW

DCA

LAX

IAD

PVD

MCO

LHR

CDG

FRA

BKK

PEK

HKG

NRT

ICN

164

170

160

185

250

Figure 1: (a) A set of 21 demand points and (b) a possible solution to the discrete k-capacitated
facility location problem, for k = 3. (This test case can be found in test04-input.txt)

Discrete Capacitated Facility Location: This problem can be modeled mathematically as fol-
lows. Let P = {p1, . . . , pn} denote the set of demand points in R

2 (see Fig. 1(a)), and the
integer k denote the maximum capacity of any center. The objective is to determine the
locations of a set of service centers C = {c1, c2, . . .}, and an assignment of each demand point

1

to a one of these centers, so that each center is assigned to serve at most k demand points (see
Fig. 1(b)). For each center cj , define service radius rj to be the maximum distance to any of
the demand points assigned to it. Define the cost of the solution, denoted cost(C) =

∑
j rj .

The objective is to compute a set of centers satisfying the capacity constraints and minimizing
the cost. This is called the discrete k-capacitated facility location problem.

Unfortunately, there is a trivial solution to the problem, namely to make every point of P a
service center. To prevent this, let us add the additional constraint that every service center
must be assigned to exactly k demand points (including itself). As a consequence, we will
need to add the condition that the capacity k evenly divides the total number of points.

Greedy Heuristic: This problem is NP-hard, so we are not aiming to find an optimal solution.
Instead, we will implement a common heuristic solution, called the greedy solution. This is
computed as follows:

❼ Initialize the set of service centers to the empty set, that is, C ← ∅.

❼ While P ̸= ∅, repeat the following steps:

– For each pi ∈ P compute its k-nearest neighbors (including itself) from P . Let ri
denote the distance from pi to its kth nearest neighbor, called its radius.

– Find the point pi that has the smallest radius value ri. Add pi to C. Remove pi
and its k − 1 other nearest neighbors from P .

❼ Return C and the associated assignments as the final result.

Implementing the Greedy Heuristic: Unfortunately, a direct implementation of the above al-
gorithm will not be very efficient. First off, computing nearest neighbors without the aid of a
data structure is very slow. Also, with each iteration, we delete k points from P , which will
affect the nearest-neighbor radii of the other points.

Instead, we will use the data structures we have implemented this semester to help us out.
First, we will store the points in a spatial index (the extended kd-tree from Project 2) so that
k-nearest-neighbor queries can be answered efficiently. Second, we will store service centers
cj and the associated radius values rj in a priority queue (the leftist heap from Project 1).
To extract the next center, we extract the minimum key from the priority queue.

We still have the problem that whenever we delete a point from P , it might affect the result
of an earlier k-nearest-neighbor queries. To handle this, we will store not only the service
center and radius, but all cj ’s k-nearest-neighbors in the priority queue. When we extract a
candidate cluster center, we will search the tree to see that all the points assigned to it still
exist. If so, this cluster of points is valid, and add cj to C and delete all the points in its
cluster. If not, we recompute cj ’s k-nearest neighbors, and recompute its new radius rj , and
put this entry back in the priority queue. The algorithm is outlined below. (Also see the
description of extractCluster below.)

❼ Initialize the set of service centers to the empty set, that is, C ← ∅. Create a new
(extended) kd-tree and add all the points of P in bulk to this tree. Create an new
(leftist) priority queue.

2

❼ For each point pi ∈ P , use the kd-tree to compute its k-nearest neighbors (including
itself). Let Li be a list storing these k points, and let ri denote the distance to the
farthest of these points. Store the key-value pair (ri, Li) in the priority queue.

❼ While P ̸= ∅, repeat the following steps:

– Use the extract-min operation to remove the pair (ri, Li) from the queue having
the smallest radius. Let ci denote the associated cluster center. (Note: In our
implementation, we will assume that the elements of Li are listed in increasing
order of distance from the center point. This means that ci will always be the first
element in the list.)

– For each qi ∈ Li, perform a find operation on the kd-tree to see whether qi is still
in the tree. If not, break out of the loop in failure.

– If we exited the loop with success, delete all the points of Li from the kd-tree. Add
ci to our list of service centers and the points of Li (including ci itself) are the
demand points assigned to it.

– If we exited the loop with failure, there are two cases. If ci is still in the kd-tree, we
perform a k-nearest neighbor search to compute its new list L′

i of nearest neighbors.
Let r′i be the distance to the farthest point in the new list. (Note: Since we assume
that L′

i is sorted by distance, r′i will be the distance from ci to the last point in the
list.) Insert the pair (r′i, L

′

i) into the priority queue. Otherwise, (if ci is not in the
kd-tree) do nothing. In either case, we stay in the loop until we find a valid cluster.

❼ Return C and the associated assignments as the final result.

In order to implement the above algorithm, you will need to make two enhancements to the
kd-tree from Project 2. First, you will need to implement a delete operation, and second you
will need to implement a k-nearest-neighbor operation. We will discuss these in further detail
below.

Deletion and k-Nearest Neighbors

What are the main changes to your kd-tree implementation from Project 2? These are
the operations of deletion and k-nearest neighbors (k-NN)queries. Along the way we will
implement a useful utility data structure.

void delete(Point2D pt) throws Exception: This deletes the point pt from the tree. It
begins by searching for the point. If it is not found, it throws an Exception with the
error message "Deletion of nonexistent point". Otherwise, it removes this point
from the external-node containing it. (Note that this is very different from the deletion
operation for standard kd-trees. We do not need to find a replacement node, because all
deletions occur from the leaf level.)

If the deletion results in an empty bucket, we may need to take additional action. If the
external node is the root of the tree, we just leave the external node empty. (This only
happens when we delete the last point, so the tree is now empty.) Otherwise, the tree
needs to be modified to avoid having an empty bucket. Let q be the external node where

3

ORD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

JFK

SFO

SEA

ATL

JFK (9,3)

LAX (4,2)

y = 5

x = 6

SEA (5,5) BWI (8,8)

DCA (6,7)

x = 3.5

cutDim = 0

cutVal = 3.5

y = 6

ATL (1,5)

IAD (3,4)

cutDim = 1

cutVal = 6

ORD (2,6) DFW (3,8)

SFO (1,9)

y = 8

DFW

DCA

IAD

Figure 2: An example of an extended kd-tree with bucket size 2 and bounding box [0, 10]× [0, 10].

y = 5

x = 6

SEA (5,5) DCA (6,7)

y = 5

SEA (5,5)

delete(6,7)

JFK (9,3) JFK (9,3)

gp
y = 5

x = 6

SEA (5,5) DCA (6,7)

JFK (9,3)
p

qs

s

gp

Figure 3: Deleting (6, 7) results in an empty bucket. We remove this external node q and its parent
p, replacing them with the sibling node s.

the deletion took place, let p be its parent, let gp be q’s grandparent, and let s be q’s
sibling (see Fig. 3). We unlink both q and p from the tree, and s replaces p as the child
of gp. Note that if p is the root of the tree, s becomes the new root node. In Fig. 4 we
present an example of a series of deletions resulting eventually in an empty tree.

ArrayList<LPoint> kNearestNeighbor(Point2D q, int k): Computes the k points that
are closest to the query point q. The result is a Java ArrayList of LPoint. If the tree
is empty, it returns an empty ArrayList. If k exceeds the number of points in the tree,
the list contains only as many points as there are in the tree. The list should be sorted
in increasing order of (squared) distance from the query point (see Fig. 5).

How to implement kNearestNeighbor? The k-NN algorithm is quite similar to that of the sin-
gle nearest-neighbor. In the that algorithm, we maintained a variable best, which stored the
closest point seen so far in the search. To generalize this for k-nearest neighbors, we will
maintain the k closest points seen so far. To do this, you will implement a useful utlity data
structure, called MinK. Each time we encounter a new point, we add it to the MinK structure,
but no matter how many entries are inserted, this structure only retains the smallest k items.
In our case, elements in MinK will be sorted by their squared distance from the query point,
so we only save the k closest points.

Given this data structure, we can answer k-nearest neighbor queries as follows. First, we
get the kth (that is, maximum) entry from the MinK structure (using an operation getKth

described below). If the cell is farther away relative to q, we know that nothing in this subtree
can provide a better point than one of the closest k, so we skip this node. Otherwise, we add
a key-value pair consisting of this node’s point and its distance from q to the MinK structure.

4

y = 5

x = 6

SEA (5,5) BWI (8,8)

DCA (6,7)

y = 5

x = 6

SEA (5,5) DCA (6,7)

delete(8,8)
y = 5

SEA (5,5)

delete(6,7)

JFK (9,3) JFK (9,3) JFK (9,3)

root root root

y = 5

SEA (5,5)JFK (9,3)

delete(9,3)

root

delete(5,5)root

Figure 4: The operation delete(8,8) removes BWI from its bucket. Next, delete(6,7) removes
DCA from its bucket, resulting in an empty bucket, causing SEA to replace its parent. Similarly,
delete(9,3) removes both JFK and its parent, making SEA the new root. Finally, deleting (5,5)

results in an empty tree with a single empty external node.

(Remember, this only saves the k closest points.) We then recursively visit the two children,
giving priority to the one that is closer to q. The code block below shows how to do this for
a standard kd-tree. Note that, unlike the code given in class, there is no need to return minK,
because it is passed as a reference parameter. You will need to convert this to work with your
extended kd-tree.

IAD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

DCA

ATL

JFK

SEA

SFO

(8, 2)

kNearestNeighbor(3, (8,2)) = [JFK, LAX, DCA]

Figure 5: k-NN query for k = 3 and q = (8, 2) returns the sorted point list [JFK, LAX, DCA].

The MinK data structure: All that remains is to explain how MinK works. It is defined generi-
cally, based on the key and value pairs it stores. Here is the declaration:

public class MinK<Key extends Comparable<Key>, Value> { ... }

When we use it for k-NN queries, the keys will be squared distances to the query point (of type
Double) and the values will be points of type LPoint. It has the following public members:

MinK(int k, Key maxKey): This is the constructor, which is given the number of items k
to maintain and the maximum possible key value. For our puroposes, the value k will
just be the value k in the k-NN query, and since we are sorting by squared distances,

5

Helper for k-NN search in a standard kd-tree
void kNNHelper(Point2D q, KDNode p, Rect2D cell, MinK minK) {

if (p == null) return // fell out of tree?

if (cell.distTo(q) > minK.getKth()) return // cell is too far away?

minK.add(p.point.distTo(q), p.point) // add this point

int cd = p.cutDim // cutting dimension

Rectangle leftCell = cell.leftPart(cd, p.point) // get child cells

Rectangle rightCell = cell.rightPart(cd, p.point)

if (q[cd] < p.point[cd]) { // q is closer to left?

kNNHelper(q, p.left, leftCell, minK)

kNNHelper(q, p.right, rightCell, minK)

} else { // q is closer to right?

kNNHelper(q, p.right, rightCell, minK)

kNNHelper(q, p.left, leftCell, minK)

}

}

the value of maxKey can be set to Double.POSITIVE INFINITY. (Save this value, since
it will be needed for getKth below.)

int size(): This returns the current number of elements in the structure. Initially the size
is zero, and as elements are added the size increases up to a maximum of k.

void clear(): This removes all entries, reseting the structure to its initial empty state.

Key getKth(): If the structure has k elements, this returns the maximum key value among
these elements. Otherwise, it returns maxKey value given in the constructor. (Why
maxKey and not null? The reason is that this is what works most conveniently for the
k-NN helper. If we have not yet seen k points, we will never decline the opportunity to
visit a node.)

ArrayList<Value> list(): Create a ArrayList of the values in the structure, sorted in
increasing order by their key values. (Note: We will not modify the contents of the
values stored in the returned list, so it is not necessary to perform a “deep copy” of the
values. You can just copy the references into the resulting ArrayList.)

void add(Key x, Value v): This adds the given key-value pair to the current set. If the
structure has fewer than k element, this entry is added, increasing the size by one. If
the structure has k elements and x is greater than or equal to the largest, the operation
is ignored. If the structure has k elements and x is less than the largest, the pair (x, v)
is added, and the previous largest is removed. Thus, the size of the structure remains k.

An example is shown in Fig. 6.

How to implement MinK? You have two choices on how to implement the MinK structure:

Simple and Slow: (Efficiency penalty of 10 points.) Just store the key-value pairs in an
array (or ArrayList) sorted by key values (similar to Fig. 6). When a new entry is
added, simulate one step of insertion-sort, by sliding all the larger elements down one
position until finding the slot where the new item fits. If there were already k elements,
the largest element just falls off the end of the array. (This takes O(k) time per insertion.)

6

25, SFO 25, SFO

85, IAD

25, SFO

85, IAD

53, DCA 25, SFO

12, BWI

53, DCA

12, BWI53, DCA

addaddadd

85, IAD

add

25, SFO

getKth = ∞ getKth = ∞ getKth = 85 getKth = 53

k = 3

25, SFO

12, BWI

53, DCA

67, JFK

add

getKth = 53

Figure 6: Example of MinK operations for k = 3 and maxKey =∞.

Smart and Speedy: The second method is more efficient, and you will get full credit. Main-
tain a standard binary heap, as used in heap-sort. (Recall Lecture 5 on Heaps). It will
be max-heap ordered with the largest element stored at the root. When a new entry
is added, there are two cases. First, if there are currently fewer than k elements in the
heap, add this element to the next available position in the heap array and sift it up to
its proper location. Otherwise, if there are k elements in the heap, compare the newly
added element to the root. (The root has the largest entry.) If it is greater than or equal,
ignore the insertion. If it is less than the root’s key, replace the root with the new item,
and sift it down to its proper location. (This takes O(log k) time per insertion.) Note
that the operation list will need to copy the contents of structure to a new ArrayList

and then sort them by key. If you like, you may do this by implementing heap-sort. But
it is fine for full credit to simply invoke Collections.sort.)

Back to Facility Location

In order to test your facility location algorithm, you will implement a class called KCapFL,
for k-capacitated facility locator. It will implement the greedy facility location algorithm,
and we will add a few additional functions for grading purposes to allow us to inspect how
your function works. This class is parameterized by the point type, which like our kd-
tree, will just be labeled points. The declaration is public class KCapFL<LPoint extends

LabeledPoint2D>. It will store the following pieces of private data:

int capacity: This is the maximum capacity of any service center, which we have called k

up to now

XkdTree<LPoint> kdTree: A kd-tree for storing the points

LeftistHeap<Double, ArrayList<LPoint>> heap: A leftist heap for storing key-value pairs.
Each pair is of the form (ri, Li), where ri is the squared radius of this cluster of points
and Li is the set of points in the cluster. The heap ordered by the (squared) service radii,
that is, the squared distance to the kth nearest neighbor. (As with the programming
assignment, this is min-heap ordered, with the smallest radius at the root.)

It supports the following public functions:

KCapFL(int capacity, int bucketSize, Rectangle2D bbox): This is the constructor. It
sets the capacity, creates a new kd-tree with the given bucket size and bounding box,
and creates a new leftist heap.

7

void clear(): This clears the data structure by clearing both the kd-tree and the leftist
heap.

void build(ArrayList<LPoint> pts) throws Exception: This initializes the structure.
First, it checks whether the number of points is strictly greater than zero and is evenly
divisible by the capacity. If not, it throws an Exception with the error message "Invalid
point set size". Otherwise, it performs a bulk-insertion of the points into your kd-
tree. Finally, it creates the initial radii. Do do this, it enumerates all the points. For each
point pi it computes its k-nearest neighbors using the kd-tree. et Li be the ArrayList

of labeled points returned by the k-nearest neighbor procedure. Let ci be the center
point (the first point in Li). Let ri be the squared distance to the farthest point (the
kth point of Li). Insert the key-value pair (ri, Li) in your leftist heap. (There is not
need to perform a deep copy. Just copy the reference to Li.)

ArrayList<LPoint> extractCluster(): This performs one step of the greedy algorithm.
First, if the kd-tree is empty, return null as a signal that there are no more clusters.
Otherwise, repeat the following steps until we are successful in finding a cluster. Extract
the next cluster (ri, Li) from your priority queue (the leftist heap). Using the kd-tree
find operation, check whether every point of Li is still in the kd-tree. If so, we have
successfully found a cluster, and otherwise we haven’t. Here is how to process each of
these cases:

Success: Delete all the points of Li from the kd-tree, and return Li as the answer.

Failure: Let ci be the first point of Li (the service center). If ci is still in the kd-tree,
compute a new list L′

i of its k-nearest neighbors, let r′i be its new radius, and add
the pair (r′i, L

′

i) back into the leftist heap. (Note that ci will still be the first element
of L′

i, so we have effectively replaced an old damaged cluster for ci with a new one.)
Otherwise, (ci is not in the kd-tree) do nothing. In either case, continue extracting
clusters from the priority queue until we succeed.

Note that the leftist heap will throw an Exception if you attempt to extract when there
are no more elements left. In theory, this should not happen, since if you still have points
in your kd-tree, you should still have clusters in your leftist heap. Nonetheless, you will
need to create a try-catch block to keep the compiler happy, but if you ever reach the
catch section, there is something wrong in your program.

ArrayList<String> listKdTree(): This just invokes the list operation on your kd-tree
tree (for debugging).

ArrayList<String> listHeap(): This just invokes the list operation on your leftist heap
tree (for debugging).

More Information

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You will
need to fill in the implementation of the KCapFL.java, XkdTree.java, LeftistHeap.java,
and MinK.java. As before, we will provide Point2D, Rectangle2D), and so on. We will also
provide the testing programs, Part3Tester.java and Part3CommandHandler.java. As with
the previous assignment, the package “cmsc420 f22” is required for all your source files.

8

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

What if I cannot finish? Give priority to working on point deletion and k-nearest neighbors. If
you do just those, you will get roughly 50% credit. The remainder will be for the KCapFL

functionality and the usual efficiency/style points. But, don’t be intimidated by the lengthy
description. The lengthy description above is almost a line-for-line presentation of the KCapFL
class. My class was only about 1/5 as long as my leftist heap and kd-tree implementations.

What if my kd-tree/leftist heap didn’t work? We’ll make minimal versions of these programs
available to you. You will still need to implement deletion and k-nearest neighbors.

Efficiency requirements: (20% of the final grade) 10% for efficiently implementing k-NN and
10% for efficiently implementing MinK.

Style requirements: (5% of the final grade) Good style is not a major component of the grade,
but you should demonstrate some effort here. Part of the grade is based on clean, elegant
coding. There is no hard rules here, and we will not be picky. If we deduct points, it
will because you used an excessively complicated structure to implement a relatively simple
computation.

The other part is based on commenting. You should have a comment at the top of each file
you submit. This identifies you as the author of the program and provides a short description
of what the program does. For each function (other than the most trivial), you should also
include a comment that describes what the function does, what its parameters are, and
what it returns. (If you would like to see an example, check out our canonical solution to
Programming Assignment 1, on the class Project Page.)

Testing/Grading: As always, we will provide some sample test data and expected results along
with the skeleton code.

As before, we will be using Gradescope’s autograder for grading your submissions. You need
to submit KCapFL.java, XkdTree.java, LeftistHeap.java, and MinK.java files. If you
created any additional files for utility objects, you will need to upload those as well.

9

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

CMSC 420: Fall 2022

Homework 1: Trees and More

Problem 1. (15 points) Answer the following questions involving the rooted trees shown in Fig. 1.

(a) (3 points) Consider the rooted tree of Fig. 1(a). Draw a figure showing its representation
in the “first-child/next-sibling” form.

(a) (c)

b

f

d

c

g

h

e

j

aroot

i

gi

j

e

f

g h

c b k

d

a

(b)

Figure 1: Rooted trees.

(b) (2 points) List the nodes Fig. 1(b) in preorder.

(c) (2 points) Repeat (b) but for inorder.

(d) (2 points) Repeat (b) but for postorder.

(e) (3 points) Draw a figure showing the tree of Fig. 1(c) with inorder threads. (As an
example, see Fig. 7 from the Lecture 3 notes. Be sure to include any null threads.)

(f) (3 points) Draw a figure showing the tree of Fig. 1(c) where each node is labeled with
its null path length value. (As an example, see Fig. 5(a) from the Lecture 5 notes).

Problem 2. (5 points) An alternative to using rank in the disjoint-set union-find data structure
is to use the size of the tree. Suppose that we modify the union algorithm as follows. When
we union two trees T ′ and T ′′ having n′ and n′′ nodes respectively, if n′ ≤ n′′, then we link
T ′ as a child of T ′′, and otherwise we link T ′′ as a child of T ′ (see Fig. 2).

n
′′

n
′

n
′ ≤ n

′′

n
′

n
′′

n
′′
< n

′

T
′ T

′′

T
′′ T

′

Figure 2: Size-based union.

Prove the following lemma, which shows that this also yields height-balanced trees.

Lemma: If the above size-based merging process is used, a tree of height h has at least 2h

elements.

1

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect03-trees.pdf
http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect05-heaps.pdf

Give a formal proof of this lemma. (Hint: The proof is similar to the one given in the lecture
notes.)

Problem 3. (12 points) You are given a binary search tree as given in the class BinarySearchTree
from Lecture 6 (page 9). (In this problem, we will not be using the value fields of the nodes.)
In answering the following you may add additional utility functions to this class, but you
should not modify the node class, BSTNode, nor add additional data to the BinarySearchTree
class. In addition to your pseudocode, provide a short description of how your function works.

(a) (4 points) Present pseudocode for a member function preDepth(), which traverses the
nodes in preorder and prints each node’s key and its depth (see Fig. 3). (Hint: I would
suggest creating a recursive helper function preDepthHelper(BSTNode u, ...), which
is given a specific node u and, optionally, additional parameters of your choosing. The
initial call is preDepthHelper(root, ...). You may create additional helper functions
if you like.)

4

7

8

14

1 16

2 1813

12

105

preDepth:

1, 3

4, 4
5, 3

2, 2

10, 3
8, 2

7, 1

13, 2

16, 3
18, 2

14, 1

12, 0 postNPL: 1, 0
4, 0
5, 0
2, 1
10, 0
8, 0
7, 1
13, 0
16, 0
18, 0
14, 1
12, 2

postStats: 1, 3, 0
4, 4, 0
5, 3, 1
2, 2, 2
10, 3, 0
8, 2, 1
7, 1, 3
13, 2, 0
16, 3, 0
18, 2, 1
14, 1, 2
12, 0, 4

Figure 3: Depth and null path lengths in postorder.

(b) (4 points) Present pseudocode for a member function postNPL(), which traverses the
nodes in postorder and prints each node’s key and its null path length (see Fig. 3). (Hint:
As in part (a), create a recursive helper function.)

(c) (4 points) Present pseudocode for a member function postStats(), which traverses the
nodes in postorder and prints each node’s key, its depth, and its height (see Fig. 3).

Problem 4. (10 points) You have just invented a new data structure, called a dual stack, which
stores two stacks in a single array. It works as follows. Given an array A of length m, one of
the stacks starts at index 0 and grows upwards and the other starts at index m−1 and grows
downwards (see Fig. 4). More formally, there are two stack tops top1 and top2. Initially,
top1 = -1 and top2 = m. Assuming that top1 < top2, when an object is pushed on the
first stack, we store it in A[++top1]. When an object is pushed on the second stack, we store
it in A[--top2]. Each operation costs +1 unit.

If a push occurs where top1 = top2, we need to expand the arrays (see Fig. 4). Let n1 =
top1+1 denote the number of elements in stack 1, and let n2 = m−top2 denote the number
of elements in the second stack. We allocate a new array of size m′ = 3max(n1, n2), and
then we copy the elements from the current array to the new array. (The stack-2 elements
are copied to the top of the new array.) The actual cost of the expansion is equal to the total

2

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect06-bst.pdf

0
1
2

m− 1
m− 2

· · ·

A[12]

top2

top1

top2
top1

A[21]

top2

top1

n2 = 5

n1 = 7

m = 12

A[12]
copy

copy

Figure 4: Expanding dual stack.

number of elements copied, that is, n1+n2. After the expansion is finished, we have sufficient
space to insert the new element, and we perform the push, which costs +1 unit of work.

For example, in Fig. 4, the current array has 12 elements, and when n1 = 7 and n2 = 5 and
someone attempts to push an additional element on one of the two stacks we allocate a new
array of size m′ = 3max(n1, n2) = 21 and we copy the elements of the two arrays into the
new array. The cost of the expansion is n1 + n2 = 12 plus an addition +1 unit for the actual
push.

In this problem, we will prove that the dual stack has constant amortized cost. Initially, the
array has space for two entries (m = 2), and both stacks are empty.

(a) (4 points) Suppose that we have just performed a reallocation. Our current array of size
n1 + n2 = m, and our new array is of size m′ = 3max(n1, n2). Explain why at least
m′/3 pushes can be performed until the new array needs to expand again. (Hint: The
actual number depends on the relative values of n1 and n2. What is the worst case?)

(b) (2 points) Explain why the cost of the next expansion is m′.

(c) (4 points) Using parts (a) and (b) and the fact that cheap stack operations (which do not
cause an expansion) cost +1 unit, derive the smallest constant c such that the amortized
cost of our expanding dual stack is at most c and prove the correctness of your answer.

Problem 5. (8 points) Consider the two leftist heaps with roots u and v shown in Fig. 5. In this
problem, you will trace the execution of the merge function merge(u, v) on this input.

26

17

7

1829

10

2423

12

6

16

11

15

3

9

u v

Figure 5: Leftist heap merge.

3

(a) (4 points) List all the recursive calls made in the order in which they are made. (Use
the key value in each node to identify it. For example, the first recursive call made
is merge(6,3). You should follow the code rigorously. Do not rely on the intuitive
“two-phase” approach used to illustrate the algorithm.)

(b) (4 points) Draw the final merged tree structure (after all the recursive calls terminate)
and indicate the NPL values for each node.

Note: Challenge problems are not graded as part of the homework. The grades are recorded
separately. After final grades have been computed, I may “bump-up” a grade that is slightly below
a cutoff threshold based on these extra points. (But there is no formal rule for this.)

Challenge Problem 1: In class, we showed that it is possible to merge two leftist heaps of sizes
n′ and n′′ in time O(log n), where n = n′ + n′′. We never explained how to perform the
operations insert and extract-min, however. Present pseudocode to implement these two
operations in O(log n) time. (Hint: Use the merge helper function.)

Challenge Problem 2: In class, we showed that the rightmost path in any leftist heap has length
O(log n). The analysis presented in the Lecture 5 notes (page 6) shows that if a leftist heap
has n nodes, it has at most lg(n+1) nodes along its rightmost path. Prove that it is generally
the case that in any binary tree with n ≥ 1 nodes, there exists a path from the root to a node
with a null child, such that this path has at most lg(n+ 1) nodes.

4

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect05-heaps.pdf

CMSC 420: Fall 2022

Homework 2: Search Trees

Problem 1. (10 points) Consider the AVL trees shown in Fig. 1.

6

7 11

12

10

9

81

2

3

4

5

8

7

3

2

4 11

10

9
delete(4)

1 6

insert(5)

Figure 1: AVL-tree operations.

(a) (5 points) Show the result of executing the operation insert(5) to the tree on the left.

(b) (5 points) Show the result of executing the operation delete(4) to the tree on the right.

In each case, show the final tree and list (in order) all the rebalancing operations performed
(e.g., “rotateLeftRight(7)”). Intermediate results may be shown for the sake of assigning
partial credit. Draw the final tree as in Fig. 1(b) from Lecture Lecture 7. Show the balance
factors at each node. (Don’t bother to give the heights.)

Problem 2. (10 points) Consider the AA trees shown in Fig. 2.

insert(21)

15

17 299

27

6

103

1 5 1

delete(13)
4

13 15

14
18

3

2
20

12

7

11

6 9 19
2025

23

Level

3

2

1

Level

3

2

1

Figure 2: AA-tree operations.

(a) (5 points) Show the result of executing the operation insert(21) to the tree on the left.

(b) (5 points) Show the result of executing the operation delete(13) to the tree on the
right.

In each case, show the final tree and list (in order) all the rebalancing operations (skew, split,
and update-level) that result in changes to the tree (e.g., “skew(13)”). Intermediate results
may be shown for the sake of partial credit.

Draw the tree as in Figs. 6 and 7 from Lecture 9. Indicate both the levels and distinguish
red from black nodes. You do not need to color the nodes—a dashed line coming in from the
parent indicates that a node is red. (Do not bother drawing nil.)

1

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect07-avl.pdf
http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect09-red-black.pdf

Problem 3. (10 points) Recall from Lecture 9 the classical red-black tree (not the AA tree) ef-
fectively models a generalization of the 2-3 tree, called the 2-3-4-tree. Recall that this is a
straightforward generalization of 2-3 trees, but nodes may have 2, 3, or 4 children (and 1, 2,
or 3 keys, respectively).

(a) (5 points) Fig. 3 shows a (classical) red-black tree. Draw the associated 2-3-4 tree. (Draw
your tree using the same format as in Fig. 1(c) from Lecture 8.)

17

10

14

20

22
741

2

5

23

18

16

12

13
15

Figure 3: Converting a red-black tree to a 2-3-4 tree.

(b) (5 points) Explain what sequence of AA rebalancing operations (skews and splits) would
be needed to convert this tree into an AA tree (e.g., “skew(13), split(18), ...”).
Draw the final AA tree.

Problem 4. (10 points) Consider the splay trees shown in Fig. 4. In both cases, apply the exact
algorithms described in the Lecture 12 notes.

(a) (5 points) Show the steps involved in operation insert(9) for the tree in Fig. 4 (left).

19

6

17

3

1 12

4

8

10

15

11

17

3

1

12

4 8

delete(8)

10 15

6

19

insert(9)

Figure 4: Splay-tree operations.

(b) (5 points) Show the steps involved in operation delete(8) for the tree in Fig. 4 (right).

In both cases, indicate what splays are performed and what additional alterations are per-
formed beyond splaying. (When doing splaying, we only need to see the tree after splaying is
complete, but intermediate results may be shown for partial credit). Also show the final tree
after the insert/delete operation is finished.

Problem 5. (10 points) Can you determine the structure of a binary tree based solely on a preorder
enumeration of its nodes? In general, the answer is no, since there can be multiple trees that
have the same preorder listing of nodes. In this problem, we will see that there are instances
where this is possible.

2

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect09-red-black.pdf
http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect08-23tree.pdf

Recall that a binary tree is said to be full if every node has either two (non-null) children or
no children at all (both are null). An example is shown in Fig. 5.

Suppose that you have a full tree with n nodes, which have been enumerated according to
a preorder traversal and stored in an array called preorder[n]. Suppose as well that you
have a parallel boolean array isLeaf[n], which tells you which nodes are leaves and which
are not. In particular, isLeaf[i] is true if preorder[i] is a leaf node and false otherwise.

b c

g

a

f

m

apreorder: b cd e f gh i j k l m n o

0 1 2 ...

FisLeaf: TF F F F F FT T T T T T T

n-1

h i

e

j k l

n o

d

Figure 5: A full binary tree and the arrays preorder and isLeaf.

(a) (5 points) Suppose that the arrays preorder and isLeaf have been generated from some
full binary tree T . Prove that T is uniquely determined from the contents of these two
arrays. (Hint: Use strong induction on the number of nodes in the tree.)

(b) (5 points) Present pseudocode for a function, which given two valid arrays, preorder
and isLeaf, constructs the unique tree that they represent. You may assume that the
arrays are valid in the sense that they define an actual full binary tree.

Hint: Write a recursive function buildTree(int i) which is given an index i, con-
structs the subtree rooted at node preorder[i], and returns a reference to the root of
this subtree. It may be helpful to assume that i is passed in as a reference parame-
ter, and as the procedure runs, it advances i to the first node following the generated
subtree. What is the initial call to this function?

Challenge Problem: Recall that each node of an AA tree stores a key, its level, and pointer to
its left and right children. (For this problem, we will ignore the node values. Also, rather
than using the sentinel node nil, let’s assume that we just use standard null pointers in the
leaves.)

Suppose that you have been given a valid AA tree, but all the level information is missing!
Knowing that the tree is a valid AA tree, is it possible to reconstruct the level information for
the tree? Take a position and justify it. If you believe that it is not possible, give an example
of a binary tree which can be interpreted as two different valid AA trees (where at least one
node has a different level number in the two trees). If you believe it is possible, present a
proof that the assignment of level numbers is unique. (Your proof might take the form of a
procedure that reconstructs the level information for the AA tree.)

3

2

1 3 8

9 14

18 23

4

20

15

7

5

11

2

1 3

8

9 14 18 23

11

4

20

15

7

5

Level

3

2

1

Figure 6: Can you recover the level numbers?

4

CMSC 420: Fall 2022

Practice Problems for Midterm 1

Problem 0. Expect at least one question of the form “apply operation X to data structure Y ,”
where X is a data structure that has been presented in lecture. (Likely targets: Union-Find,
leftist heaps, AVL trees, 2-3 trees, AA trees, treaps, skiplists, and splay trees).

Hint: Intermediate results can be included for partial credit, but don’t waste too much time
showing intermediate results, since they can steal time from later problems.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given to help with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) You have a standard (unbalanced) binary search tree storing the consecutive odd keys
{1, 3, 5, 7, 9, 11, 13} (which may have been inserted in any order). Into this tree you insert
the consecutive keys {0, 2, 4, 6, 8, 10, 12, 14} (also inserted in any order). Which of the
following statements hold for the resulting tree. (Select all that apply.)

(i) It is definitely a full binary tree

(ii) It is definitely a complete binary tree

(iii) Its height is larger than the original by exactly 1

(iv) Its height is larger than the original, but the amount of increase need not be 1

(c) You have a binary tree with inorder threads (for both inorder predecessor and inorder
successor). Let u and v be two arbitrary nodes in this tree. True or false: There is a
path from u to v, using some combination of child links and threads. (No justification
needed.)

(d) You are given a binary heap containing n elements, which is stored in an array as
A[1...n]. Given the index i of an element in this heap, present a formula that returns
the index of its sibling. (Hint: You can either do this by manipulating the bits in the
binary representation of i or by using a conditional (if-then-else).)

(e) In a leftist heap containing n ≥ 1 elements, what is the minimum possible NPL value of
the root? What is the maximum? (It is okay to be off by an additive error of ±O(1).)

(f) What are the minimum and maximum number of levels in a 2-3 tree with n nodes.
(Define the number of levels to be the height of the tree plus one.) Hint: It may help to
recall the formula for the geometric series:

∑

m−1

i=0
ci = (cm − 1)/(c− 1).

(g) You are given a 2-3 tree of height h, which has been converted into an AA-tree. As
a function of h, what is the minimum number of red nodes that might appear on any
path from a root to a leaf node in the AA tree? What is the maximum number? Briefly
explain.

1

(h) Unbalanced search trees, treaps and skiplists all support dictionary operations inO(log n)
“expected time.” What difference is there (if any) in the meaning of “expected time” in
these contexts?

(i) You are given a sorted set of n keys x1 < x2 < · · · < xn (for some large number n).
You insert them all into an AA tree in some arbitrary order. No matter what insertion
order to choose, one of these keys cannot possibly be a red node. Which is it? (Briefly
explain)

(j) You are given a skip list storing n items. What is the expected number of nodes that are
at levels 3 and higher in the skip list? (Express your answer as a function of n. Assume
that level 0 is the lowest level, containing all n items. Also assume that the coin is fair,
return heads half the time and tails half the time.)

Problem 2. Suppose that we are given a set of n objects (initially each item in its own set)
and we perform a sequence of m unions and finds (using height balanced union and path
compression). Further suppose that all the unions occur before any of the finds. Prove that
after initialization, the resulting sequence will take O(m) time (rather than the O(mα(m,n))
time given by the worst-case analysis).

Problem 3. You are given a degenerate binary search tree with n nodes in a left chain as shown
on the left of Fig. 1, where n = 2k − 1 for some k ≥ 1.

(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (right side of Fig. 1).

a

c

d

e

f

g

b

d

a

b

c e g

f

Figure 1: Rotating into balanced form.

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.

Problem 4. You are given a binary tree (not necessarily a search tree) where, in addition to
p.left and p.right, each node p has a parent link, p.parent. This points to p’s parent, and
is null if p is the root. Given such a tree, present pseudocode for a function that returns the
inorder successor of any node p. If p has no inorder successor, the function returns null.

Node inorderSuccessor(Node p) {

// ... fill this in

}

Briefly explain how your function works. Your function should run in time proportional to
the height of the tree.

2

Problem 5. You are given a standard (unbalanced) binary search tree. Let root denote its root
node. Present pseudocode for a function atDepth(int d), which is given an integer d ≥ 0,
and outputs the keys for the nodes that are at depth d in the tree (see Fig. 2). The keys
should be output in increasing order of key value.

If there are no nodes at depth d, the function returns an empty list. The running time of
your algorithm should be proportional to the number of nodes at depths ≤ d. (For example,
in the case of atDepth(2), there are 7 nodes of equal or lesser depth.)

11

13

1

5

9

15

63

4

16

2218

19

21

depth

0

1

2

3

4

listAtDepth(2) = ⟨3, 6, 13, 21⟩

Figure 2: Nodes at some depth.

Hint: Create a recursive helper function. Explain what the initial call is to this function.

Problem 6. Given any AVL tree T and an integer d ≥ 0, we say that T is full at depth d if it has
the maximum possible number of nodes (namely, 2d) at depth d.

Prove that for any h ≥ 0, an AVL tree of height h is full at all depths from 0 up to ⌊h/2⌋.
(For example, the AVL tree of Fig. 2 has height 4, and is full at levels 0, 1, and 2, but it is
not full at levels 3 and 4.)

Hint: Prove this by induction on the height of the tree.

Problem 7. Consider the following possible node structure for 2-3 trees, where in addition to the
keys and children, we add a link to the parent node. The root’s parent link is null.

class Node23 { // a node in a 2-3 tree

int nChildren // number of children (2 or 3)

Node23 child[3] // our children (2 or 3)

Key key[2] // our keys (1 or 2)

Node23 parent // our parent

}

Assuming this structure, answer each of the following questions:

(a) Present pseudocode for a function Node23 rightSibling(Node23 p), which returns a
reference to the sibling to the immediate right of node p, if it exists. If p is the rightmost
child of its parent, or if p is the root, this function returns null. (For example, in Fig. 3,
the right sibling of the node containing “2” is the node containing “8:12”. Since the
node containing “8:12” is the rightmost node of its parent (“4”), it has no right sibling.)

Your function should run in O(1) time.

3

2

1 3 5 : 7 9 14

8 : 12

4

15

30

23 272017

24

19 : 21

32 : 36

2levelSuccessor() = 8 : 12

levelSuccessor() =8 : 12 19 : 21

rightSibling() = null8 : 12

2rightSibling() = 8 : 12

Figure 3: Sibling and level successor in a 2-3 tree.

(b) For a node p in a 2-3 tree, its level successor is the node to its immediate right at the
same level. Give pseudocode for a function Node23 levelSuccessor(Node23 p), which
returns a reference to p’s level successor, if it exists. If p is the rightmost node on its
level (including the case where p is the root), this function returns null. (For example,
in Fig. 3, the level successor of the node containing “2” is the node containing “8:12”,
and the level successor of “8:12” is the node containing “19:21”.)

Your function should run in O(log n) time. If you like, you may use rightSibling.

(c) Suppose we start at any node p in a 2-3 tree with n nodes, and we repeatedly perform
p = levelSuccessor(p) until p == null. What is the (worst-case) total time needed
to perform all these operations? (Briefly justify your answer.)

Problem 8. Each node of a 2-3 tree may have either 2 or 3 children, and these nodes may appear
anywhere within the tree. Let’s imagine a much more rigid structure, where the node types
alternate between levels. The root is a 2-node, its two children are both 3-nodes, their children
are again 2-nodes, and so on (see Fig. 4). Generally, depth i of the tree consists entirely of
2-nodes when i is even and 3-nodes when i is odd. (Remember that the depth of a node is the
number of edges on the path to the root, so the root is at depth 0.) We call this an alternating

2-3 tree. While such a structure is too rigid to be useful as a practical data structure, its
properties are easy to analyze.

18

6 : 12

93 15

24 : 30

2721 33

4 : 51 : 2 all 3-nodes

0

1

2

Figure 4: Alternating 2-3 tree.

(a) For i ≥ 0, define n(i) to be the number of nodes at depth i in an alternating 2-3 tree.
Derive a closed-form mathematical formula (exact, not asymptotic) for n(i). Present
your formula and briefly explain how you derived it.

4

By “closed-form” we mean that your answer should just be an expression involving stan-
dard mathematical operations. It is not allowed to involve summations or recurrences,
but it is allowed to include cases, however, such as

n(i) =

{

. . . if i is even

. . . if i is odd.

(b) For i ≥ 0, define k(i) to be the number of keys stored in the nodes at depth i in an
alternating 2-3 tree. (Recall that each 2-node stores one key and each 3-node stores 2
key). Derive a closed-form mathematical formula for k(i). Present your formula and
briefly explain how you derived it. (The same rules apply for “closed form”, and further
your formula should stand on its own and not make reference to n(i) from part (a).)

Problem 9. In this problem, we will consider variations on the amortized analysis of the dynamic
stack. Let us assume that the array storage only expands, it never contracts. As usual, if
the current array is of size m and the stack has fewer than m elements, a push costs 1 unit.
When the mth element is pushed, an overflow occurs.

You are given two constants γ, δ > 1. When an overflow occurs, we allocate a new array of
size γm, copy the elements from the old array over to the new array. The total cost is 1 (for
the push) plus δm (for copying). Derive a tight bound on the amortized cost, which holds in
the limit as m → ∞. Express your answer as a function of γ and δ. Explain your answer.

Problem 10. Define a new treap operation, expose(Key x). It finds the key x in the tree (throw-
ing an exception if not found), sets its priority to−∞ (or more practically Integer.MIN VALUE),
and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

Problem 11. In this problem we will consider an enhanced version of a skip list. As usual, each
node p stores a key, p.key, and an array of next pointers, p.next[]. To this we add a
parallel array p.span[], which contains as many elements as p.next[]. This array is defined
as follows. If p.next[i] refers to a node q, then p.span[i] contains the distance (number
of nodes) from p to q (at level 0) of the skip list.

For example, see Fig. 5. Suppose that p is third node in the skip list (key value “10”), and
p.next[1] points to the fifth element of the list (key value “13”), then p.span[1] would be
5− 3 = 2, as indicated on the edge between these nodes.

Present pseudo-code for a function int countSmaller(Key x), which returns a count of the
number of nodes in the entire skip list whose key values are strictly smaller than x. For
example, in Fig. 5, the call countSmaller(22) would return 6, since there are six items that
are smaller than 22 (namely, 2, 8, 10, 11, 13, and 19).

Your procedure should run in time expected-case time O(log n) (over all random choices).
Briefly explain how your function works.

Problem 12. It is easy to see that, if you splay twice on the same key in a splay tree (splay(x);
splay(x)), the tree’s structure does not change as a result of the second call.

Is this true when we alternate between two keys? Let T0 be an arbitrary splay tree, and let
x and y be two keys that appear within T0. Let:

5

25

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5
9

9

5

3

5 4

4

3

1 1 1 1 1 1

1

1 1 1

2

1 2 3 4 5 6 7 8

Figure 5: Skip list with span counts (labeled on each edge in blue).

❼ T1 be the result of applying splay(x); splay(y) to T0.

❼ T2 be the result of applying splay(x); splay(y); splay(x); splay(y) to T0.

Question: Irrespective of the initial tree T0 and the choice of x and y, is T1 = T2? (That
is, are the two trees structurally identical?) Either state this as a theorem and prove it or
provide a counterexample, by giving the tree T0 and two keys x and y for which this fails.

6

CMSC 420: Fall 2022

CMSC 420 (0201) - Midterm Exam 1

Problem 1. (10 points)

(a) (5 points) Show the final tree that results from performing splay(5) to the tree shown
below. For assigning partial credit, indicate which nodes are involved in your zig-zig,
zig-zag, and zig rotations.

26

9

22

13

152

12

8

5

1

splay(5)

19

26

9

22

13

152

12

8

5

1

insert(14)

19

Figure 1: Splay tree operations.

(b) (5 points) Show the final tree that results from performing insert(14) to the tree shown
below. For assigning partial credit, indicate which nodes are involved in your zig-zig,
zig-zag, and zig rotations

Problem 2. (35 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(a) (4 points) You have an inorder-threaded binary tree with n nodes. Let u be an arbitrary
non-leaf node in this tree. True or False: There must be at least one thread that points
into u.

(b) (5 points) You perform a preorder traversal of a full binary tree with n nodes. You have
a counter that is incremented whenever you visit a leaf node and decremented whenever
you visit an internal node. As function of n, what are the maximum and minimum
values that this counter might achieve at any point in the traversal? (This is taken over
all possible full binary trees with n nodes.)

(c) (5 points) You build a union-find data structure for a set of n objects. Initially, each
element is in a set by itself. You then perform k union operations, where k < n. Each
operation merges two different sets. Can the number of union-find trees be determined
from k and n alone? If not, answer “It depends”. If so, give the number of trees as a
function of k and n.

1

(d) (5 points) Your boss asks you to program a new function for your leftist heap. Given
a leftist heap with n entries, the operation returns the third smallest item in the heap
(without modifying its contents). What is the minimum number of heap entries that
you might need to inspect to be certain that the third smallest item is among them?

(e) (4 points) You have just performed an insert into a 2-3 tree of height h. What is the
maximum number of split operations that might be needed as a result?

(f) (4 points) You have just inserted n (distinct) keys into a treap. As a function of n, what
is the probability that the smallest of the n keys is located at the root of the tree?

(1) 0 (That is, it cannot happen)

(2) Roughly 1/n (By “roughly”, we mean “up to constant factors”)

(3) Roughly 1/(log n)

(4) Roughly 1/2n

(5) Roughly 1/(n!)

(g) (4 points) You have a skiplist containing n keys, where n is a very large number. Suppose
you perform a find operation. The search algorithm visits one or more nodes at each
level of the structure. How many nodes do you expect to visit at level 4 of the search
structure?

(1) None of them

(2) O(1)

(3) O(log n)

(4) O(n/(24))

(5) All of them

(h) (4 points) You have just inserted a key into an AA tree having h levels. What is the
maximum number of skew operations that might be needed as a result? (Here we are
only counting skew operations that have an effect on the structure, in the sense that a
rotation is performed.)

Problem 3. (15 points) In this problem, we assume that we are given a tree-based heap structure,
which is represented by a binary tree (not necessarily complete nor leftist). Each node u

stores three things, its priority, u.key, and the pointers to its subtrees, u.left and u.right.
The keys are min-heap ordered (that is, a node’s key is never smaller than its parent). There
are no NPL values.

(a) (5 points) Present pseudocode for a function swapRight(Node u) which is given a pointer
to the root of a tree. It traverses the right chain of this tree and swaps the left and right
subtrees of all nodes along this chain (see the figure below). It returns a pointer to
the resulting tree. For full credit, your function should run in time proportional to the
length of the right chain in the tree.

(b) (10 points) Present pseudocode for a function swapMerge(Node u, Node v), which is
given pointers to the roots of two trees. It merges the right chains of these two trees
according to min-heap order, and then performs swapRight on the resulting tree (see
the figure below). It returns a pointer to the resulting tree.

2

3

5

8

10

20

7

13 11

27 14

3

5

8

10

20

7

13

14

11

27

swapRight

2735 2735

u : Final

Figure 2: The function swapRight.

For full credit, your function should do this in one pass. That is, it is allowed to
recurse down and return up, but that is all. For half credit, you can do it in two passes
(one pass to merge and one pass to swap). You may use swapRight from (a).

192735

3 5

8 1020 7

1311

27

14

3

5

8

10

20

7

13 11

27 14

192735

Merge

19

3

5

8

10

20

7

13

14

11

27

2735

right chains

swapRight
u : v : Final

Figure 3: The function swapMerge.

Problem 4. (25 points) This problem involves the analysis of two new tree structures, called the
X-tree and Y-tree, which are defined recursively in terms of each other. Let Xh and Yh denote
the X-tree and Y-tree of height h, respectively. X0 and Y0 are both defined to be a single
node. For h ≥ 1, Xh consists of a root node whose left child is null and whose right child is
Yh−1. The tree Yh consists of a root node whose left and right children are both Xh−1 (see
the figure below).

3

X0 Y0 Xh

Yh−1

Yh

Xh−1Xh−1

X1 Y1 X2 Y2

x(1) = 2 y(1) = 3 x(2) = 4 y(2) = 5

(a) (3 points) Draw a picture of X3 and a picture of Y3. (You don’t need to draw the null
pointers.)

(b) (8 points) Let x(h) and y(h) denote the number of nodes in Xh and Yh, respectively
(see the figure above). Clearly x(0) = y(0) = 1. Assuming h ≥ 1, give a formula that
expresses x(h) as a function of y(h − 1), and a formula that expresses y(h) in terms of
x(h− 1). Hint: The formulas are simple and do not involve any summations.

(c) (4 points) Assuming h ≥ 1, give a formula that expresses x(h) as a function of x(h− 2).
Hint: The formula is simple and does not involve any summations.

(d) (10 points) Prove that if h is even, x(h) = 3 · 2h/2 − 2.

Problem 5. (15 points) This is an extension of the Homework 1 problem on the dual stack, which
stores two stacks in a single array. Recall that we are given an array A of length m, one of
the stacks starts at index 0 and grows upwards and the other starts at index m−1 and grows
downwards. Initially, the array has space for two entries (m = 2), and both stacks are empty.

Assuming we have space, each single operation has an actual cost of +1 unit. Whenever
we run out of space, we expand the array as follows. Let n1 and n2 denote the numbers of
elements in the two stacks. We allocate a new array of size m′ = w ·max(n1, n2), for some
integer constant w. (In Homework 1, w = 3, but here it will be a parameter that we can
adjust). The actual cost of the expansion is equal to the total number of elements copied,
that is, n1 + n2 (see Fig. 4).

top2
top1

A[20]

top2

top1

n2 = 5

n1 = 3

A[8]
copy

copy

Figure 4: Expanding dual stack, where w = 4. When we run out of space, we allocate a new array
of size w ·max(n1, n2) = w · 5 = 20. The actual cost is +8 for the copy and +1 for the final push.

(a) (3 points) Suppose that we have just performed a reallocation. Our current array is of
size n1+n2 = m, and our new array is of sizem′ = w·max(n1, n2). What is the minimum
number of stack operations until the new array needs to expand again? Express your
answer as a function of some combination of m, m′, and/or w. Briefly explain.

4

(b) (8 points) Derive the smallest constant c such that the amortized cost of our expanding
dual stack is at most c and prove the correctness of your answer. (The value of c will
depend on w.)

(c) (4 points) How small can w be before the amortized cost is no longer bounded by a
constant? Briefly explain. (Remember that we required that w is an integer.)

5

CMSC 420: Fall 2022

Homework 3: Geometric Search and Hashing

Problem 1. (10 points) Consider the kd-tree shown in Fig. 1. Assume that the cutting dimensions
alternate between x and y.

(40, 60)

(20, 45)

(10, 20)

(20, 45) (80, 40)

(65, 30)(55, 50)

(50, 90)

(75, 60)

(65, 30) (80, 40)
(70, 75)

(75, 60)

(40, 60)

(55, 50)

(10, 20)

(70, 75)

(50, 90)

Figure 1: kd-tree operations.

(a) (5 points) Show the result of inserting (30, 30) into this tree. As in Fig. 1 show both the
tree structure (with cutting directions indicated) and the subdivision of space.

(b) (5 points) Show the kd-tree that results after deleting the point (40, 60) from the original
tree. Indicate which node is the replacement node, and show both the tree structure
and the subdivision of space.

(Intermediate results are not required, but may be given to help assigning partial credit.)

Problem 2. (5 points) Suppose that we are given a set P = {p1, . . . , pn} of n points in R
2 stored in

a kd-tree. Recall that the cell of a node in the tree is the rectangular region of space associated
with this node. Each null pointer of the tree is associated with a cell that contains no point
of P , which we call a null-pointer cell. (In Fig. 2, the null pointers are shown as small
squares.)

We assume that the kd-tree satisfies the standard assumptions: (1) The cutting dimensions
alternate between x and y with each level of the tree, (2) subtrees are balanced in the sense
that if the subtree rooted at a node p contains m points, then its two subtrees each contain
roughly m/2 points. The following lemma follows from the analysis of orthogonal range
searching from class (Lecture 14).

Lemma A: Given any kd-tree storing a set of n points in R
2 that satisfies the standard

assumptions and given any axis parallel line ℓ, the number of null-pointer cells that
intersect ℓ is O(

√
n).

1

(25, 35) (60, 75)

(5, 45) (50, 35)

(80, 20)

(35, 40)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 20)

(50, 35)

null pointers

(25, 35) (60, 75)

(5, 45) (50, 35)

(80, 20)

(35, 40)

null pointers

R

(a) (b)

Figure 2: (a) A kd-tree and null-pointer cells and (b) illustration of Lemma B.

In this problem, we will generalize this result. Consider any axis-parallel rectangle R, and let
k denote the number of points of P that lie within R. Prove the following result.

Lemma B: Given any kd-tree storing a set of n points in R
2 that satisfies the standard

assumptions and given any axis parallel rectangle R that contains k points of the set,
the number of null-pointer cells that intersect R is O(k +

√
n).

Note that if a cell is completely contained within R, we consider to intersect R. For example,
in Fig. 2(b), rectangle R contains 8 points of P (circled in red) and it intersects 21 null-pointer
cells (shaded in pink).

Hint: There is no need to resort to solving recurrences. Classify the null-pointer nodes into
two groups, those that are completely contained within R and those that partially overlap R.

Problem 3. (10 points) As in the previous problem, suppose that we are given a set P =
{p1, . . . , pn} of n points in 2D space stored in a point kd-tree (see Fig. 3(a)), which satisfies
the standard assumptions. Each node stores a point p.point, a cutting dimension p.cutDim,
and left and right child pointers p.left and p.right, respectively. You may make use of any
primitive operations on points and rectangles. You may assume that there are no duplicate
coordinate values among the points of P or the query point.

In a segment sliding, you are given a vertical line segment s, and the query returns the first
point p ∈ P that is hit if we were to slide the segment to its left (see Fig. 3(b)). If a point pi
lies on the segment, then the answer is pi. If there is no point of P to the left of the segment,
the query returns null. Since there are no duplicate x-coordinates, so the answer is always
unique.

To simplify argument lists, let’s assume that we have access to a class VertSeg that stores a
vertical segment. Given an object seg is of this type, seg.x is its x-coordinate, seg.ylo is
its lower y-coordinate, and seg.yhi is its upper y-coordinate.

(a) (7 points) Present pseudo-code for an efficient algorithm, Point slideLeft(VertSeg

seg) for answering this query given the kd-tree. (Hint: As usual, create a recursive

2

p8

p1 p2

p3

p4

p5

p6

p7

p9

seg.x
x

y

p8

p1
p2

p3

p4

p5

p6

p7

p9

P

(a) (b)

seg.ylo

seg.yhi

Figure 3: Vertical segment sliding queries.

helper function and explain how it is initially invoked. This is similar to nearest-neighbor
searching in the sense that you will keep track of each node’s cell and the best point
seen so far in the search. For efficiency, you should avoid visiting nodes that cannot
possibly contain the answer to the query.

(b) (3 points) Prove that your algorithm runs in O(
√
n) time. (Hint: Lemma B above is

helpful here. It only bounds the number of null-pointer nodes, but you may assume that
the bound applies to all the nodes that overlap the rectangle R. What is R in this case?)

Problem 4. (10 points) In this problem we will consider how to design a data structure for a
particular application. You are given a set P = {p1, . . . , pn} of n points in R

2. Each point
represents the coordinates (e.g., longitude and latitude) of a gas station (or if you prefer,
a charging station for your EV). In addition to its coordinates, each point pi = (xi, yi), is
associated with a cost, denoted ci (see Fig. 4(a)). Think of this as the cost of refueling or
recharging. These points and the costs are fixed, and you may build a data structure for
answering the following queries.

$21

$12

$8

$22

$9

$33

$25

$18

$13

$10

x

y

(a) (b)

$21

$12

$8

$22

$9

$33

$25

$18

$13

$10

x

y

q

w

h
Answer

R(q, w, h)

Figure 4: Cheapest fuel.

A query asks what is the lowest cost station in a given rectangular area (say, the map display
on the car’s navigation system). Your app knows the user’s location, call it q = (xq, yq), and
there is a rectangle R(q, w, h), called the query rectangle of width w and height h centered

3

about q (see Fig. 1). Your query is given q, w, and h, and the answer to the query is the
identity of the station in P that lies within R(q, w, h) (see Fig. 4(b)). For simplicity, you may
assume that the costs are all distinct, so the answer is always unique.

Present an efficient data structure and algorithm for answering these queries. Our objective is
a query time of O(loga n) using space O(n logb n), where a, b > 0 are small constants. (Hint:

Explain how to modify range trees. Note that you cannot use a kd-tree, since that would
have a query time of at least O(

√
n). Also note that you do not have time to list all the

points inside the query rectangle, since that number could be as high as n.)

(a) (5 points) Describe your data structure, and derive its space bound. (Hint: Use a
variant of 2-D range trees. What cost-related information is stored in each node of the
tree?)

(b) (5 points) Explain how queries are answered, and derive the query time. (Note: Pseu-
docode is not required. A high-level English description is fine.)

Problem 5. (15 points) In this problem, you will show the result of inserting a sequence of three
keys into a hash table, using linear and quadratic probing and double hashing. In each case,
indicate the following:

❼ Was the insertion successful? (The insertion fails if the probe sequence loops infinitely
without finding an empty slot.)

❼ If the insertion is successful, indicate the number of probes, that is, the number of array
elements accessed. (The final location you place the key counts as a probe, so the number
of probes is one more than the number of collisions encountered.)

❼ Show contents of the hash table after each insertion. (You will show three tables for
each part.)

For the purposes of assigning partial credit, you can illustrate the probes made as we did in
the lecture notes (with little arrows).

(a) (5 points) Show the results of inserting the keys “X” then “Y” then “Z” into the hash
table shown in Fig. 5(a), assuming linear probing. (Insert the keys in sequence, so if all

are successful, the final table will contain all three keys.)

insert("Z") h("Z") = 0

insert("Y") h("Y") = 6

insert("X") h("X") = 4

(a) Linear probing

insert("Z") h("Z") = 8

insert("Y") h("Y") = 3

insert("X") h("X") = 6

(b) Quadratic probing

G

0 1 2 3 4 5 6 7 8 90 1 2 3 8 94 5 6 7

A D C BEF AB CD E D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GA

insert("Z") h("Z") = 4; g("Z") = 4

insert("Y") h("Y") = 5; g("Y") = 3

insert("X") h("X") = 14; g("X") = 6

(c) Double hashing

E BC F H

Figure 5: Hashing with linear probing, quadratic probing, and double hashing.

(b) (5 points) Repeat (a) using the hash table shown in Fig. 5(b) assuming quadratic probing.
(Hint: You may wish to use the fact that for any integer i ≥ 0, the value of i2 mod 10,
is one of {0, 1, 4, 5, 6, 9}.)

4

(c) (5 points) Repeat (a) using the hash table shown in Fig. 5(c) assuming double hashing,
where the second hash function g is shown in the figure.

Challenge Problem: In Problem 2 above we analyze the number of null-pointer cells that inter-
sect any axis-parallel line in a kd-tree in R

2 with n points. In this problem, let’s consider
two natural generalizations to R

3. Again, we have n points, and let us make the standard

assumptions that the cutting dimensions cycle among x, y, and z, and subtree sizes are
balanced.

(a) A plane is axis-orthogonal if it is orthogonal to one of the three coordinate axes. For
example, the set {(x, y, z) | y = 13.4} is a plane orthogonal to the y-axis that cuts the
y-axis at 13.4.

Show that the number of null-pointer cells in a stanard-assumption kd-tree that intersect
any axis-orthogonal plane is O(nc) for some constant 0 < c < 1. Derive the value of c.

Hint: Derive a simple recurrence and apply the Master Theorem to solve it.

(b) An (infinite) line is axis-parallel if it is parallel to one of the three coordinate axes. For
example, the set {(x, y, z) | x = 4, z = 7} is a line parallel to the y-axis that pierces the
(x, z)-coordinate plane at the point (4, 0, 7).

Repeat part (a) for any axis-parallel line.

5

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

CMSC 420: Fall 2022

Practice Problems for Midterm 2

Problem 0. Expect at least one problem that involves working through some operations on a data
structure that we have covered since the previous exam. (Good candidates are kd-trees and
hashing, but I may draw something from the material shortly before the midterm, such as
treaps, skiplists, or splay trees.)

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) We have studied many classes of binary trees this semester. For this problem, let us
ignore the keys and consider just the tree’s node structure. Given any binary tree T ,
define its reversal to be the tree that results by flipping the left and right children at
every node in the tree. A class of trees is said to be symmetrical if it is invariant under
reversals. That is, given any valid tree T in the class, its reversal is also a valid member
of the class. Which of the following classes of binary trees are symmetrical? (Select all
that apply.)

(1) Leftist heaps

(2) AVL trees

(3) Red-black trees

(4) AA trees

(5) Treaps

(6) Splay trees

(b) Suppose you know that a very small fraction of the keys in an ordered dictionary data
structure are to be accessed most of the time, but you do not know which these keys are.
Among the various data structures we have seen this semester, which would be best for
this situation? Explain briefly.

(c) What is the maximum number of points that can be stored in a 3-dimensional point
quadtree of height h? Express your answer as an exact (not asymptotic) function of h.
(Hint: It may be useful to recall the formula for any c > 1,

∑m
i=0

ci = (cm+1)−1)/(c−1).)

(d) In high dimensional spaces (say, dimensions greater than 10), kd-trees are preferred over
quadtrees. Why is this?

(e) We have n uniformly distributed points in the unit square, with no duplicate x- or y-
coordinates. Suppose we insert these points into a kd-tree in random order. As in class,
we assume that the cutting dimension alternates between x and y. As a function of n
what is the expected height of the tree? (You may express your answer in asymptotic
form.)

(f) Same as the previous problem, but suppose that we insert points in ascending order of
x-coordinates, but the y-coordinates are random.

1

(g) You are using hashing with open addressing. Suppose that the table has just one empty
slot in it. In which of the following cases are you guaranteed to succeed in finding the
empty slot? (Select all that apply.)

(1) Linear probing (under any circumstances)

(2) Quadratic probing (under any circumstances)

(3) Quadratic probing, where the table size m is a prime number

(4) Double hashing (under any circumstances)

(5) Double hashing, where the table size m and hash function h(x) are relatively prime

(6) Double hashing, where the table size m and secondary hash function g(x) are rela-
tively prime (that is, they share no common factors)

Problem 2. Suppose that you are given a treap data structure storing n keys. The node structure
is shown in Fig. 1. You may assume that all keys and all priorities are distinct.

1
k

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

priority

key

class TreapNode {

Key key // key

int priority // priority

TreapNode left // left child

TreapNode right // right child

}

Figure 1: Treap node structure and an example.

(a) Present pseudocode for the operation int minPriority(Key x0, Key x1), which is
given two keys x0 and x1 (which may or may not be in the treap), and returns the
lowest priority among all nodes whose keys x lie in the range x0 ≤ x ≤ x1. If the treap
has no keys in this range, the function returns Integer.MAX VALUE. Briefly explain why
your function is correct.

For example, in Fig. 1 the query minPriority("c", "g") would return 2 from node
"e", since it is the lowest priority among all keys x where "c" ≤ x ≤ "g".

(b) Assuming that the treap stores n keys and has height O(log n), what is the expected-case
running time of your algorithm? (Briefly justify your answer.)

Problem 3. We usually like our trees to be balanced. Here we will consider unbalanced trees.
Given a node p, recall that size(p) is the number of nodes in p’s subtree. A binary tree is
left-heavy if for each node p, where size(p) ≥ 3, we have size(p.left)/size(p) ≥ 2/3 (see
the figure below). Let T be a left-heavy tree that contains n nodes.

(a) Consider any left-heavy tree T with n nodes, and let s be the leftmost node in the
tree. Prove that depth(s) ≥ log3/2 n. (If you are super careful in your proof, you may
discover this is not quite true. The actual bound is (log3/2 n)−c, for a constant c. Don’t
worry about this small correction term.)

2

T

s

t

Figure 2: A left-heavy tree.

(b) Consider any left-heavy tree T with n nodes, and let t be the rightmost node in the
tree. Prove that depth(t) ≤ log3 n.

Problem 4. In ordered dictionaries, a finger search is one where the search starts at some node
of the structure, rather than the root. This is useful when you believe that the next key you
are searching for is close to the last one you visited.

Let us suppose we have a skiplist, with the node structure as shown in Fig. 3. Suppose that
we have two keys, x < y, and we have already found the node p that contains the key x. In
order to find y, it would be wasteful to start the search at the head of the skip list. Instead,
we start at p. The operation forwardSearch(p, y) searches for key y starting at node p

(whose key is smaller than y). If y is found it returns the associated value, and otherwise it
returns null.

25

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5
9

9

5

3

5 4

4

3

1 1 1 1 1 1

1

1 1 1

2

forwardSearch(p, 19)
p

class SkipNode {

Key key

Value value

SkipNode[] next

}

Figure 3: The operation forwardSearch.

Of course, we could crawl along level 0, but this would be slow. Suppose that there are m
nodes between x and y in the skip list. We want the expected search time to be O(logm),
not O(log n).

Present pseudo-code for an algorithm for an efficient function. You do not need to analyze
the running time. (Hint: The height of any node p can be determined as the length of its
array of next pointers, that is, p.next.length.)

Problem 5. You are given a set P of n points in the real plane stored in a kd-tree, which satisfies
the standard assumptions. A partial-range max query is given two x-coordinates lo and hi,
and the problem is to find the point p ∈ P that lies in the vertical strip bounded by lo and
hi (that is, lo ≤ p.x ≤ hi) and has the maximum y-coordinate (see Fig. 4).

3

lo hi

Answer

x

y

Figure 4: Partial-range max query.

(a) Present pseudo-code for an efficient algorithm to solve partial-range max queries, as-
suming that the points are stored in a point kd-tree. To simplify notation, let’s assume
we have an vertical strip object, Strip, where strip.lo and strip.hi are the strip
bounds. You may make use of any primitive operations on points and rectangles (but
please explain them). Hint: A possible signature for your helper function might be:

Point partialMax(Strip s, KDNode p, Rectangle cell, Point best)

(b) Show that your algorithm runs in time O(
√
n).

Problem 6. In this problem we will see how to use kd-trees to answer a common geometric query,
called ray shooting. You are given a collection of vertical line segments in 2D space, each
starts at the x-axis and goes up to a point in the positive quadrant. Let P = {p1, . . . , pn}
denote the upper endpoints of these segments (see Fig. 5). You may assume that both the x-
and y-coordinates of all the points of P are strictly positive real numbers.

x

y

p8

p1

p2

p3

p4

p5

p6

p7

p9

p10

rayShoot(q) = p8

x

y

q

p8

q
′

rayShoot(q′) = null
p1

p2

p3

p4

p5

p6

p7

p9

p10

Figure 5: Ray shooting in a kd-tree.

Given a point q, we shoot a horizontal ray emanating from q to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure
above, the ray shot from q hits the segment with upper endpoint p8. The ray shot from q′

hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P . A query is given the point q = (qx, qy), and it returns the upper endpoint
pi ∈ P of the segment the ray first hits, or null if the ray misses all the segments.

4

Suppose you are given a kd-tree of height O(log n) storing the points of P . (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot(q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please
explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Hint: You might wonder how to store segments in a kd-tree. It turns out that to answer this
query you do not need to store segments, just points. The function rayShoot(q) will invoke
a recursive helper function. Here is a suggested form, which you are not required to use:

Point rayShoot(Point2D q, KDNode p, Rectangle cell, Point best),

Be sure to indicate how rayShoot(q) makes its initial call to the helper function.

Problem 7. In class we showed that for a balanced kd-tree with n points in the real plane (that
is, in 2-dimensional space), any axis-parallel line intersects at most O(

√
n) cells of the tree.

Show that for every n, there exists a set of points P in the real plane, a kd-tree of height
O(log n) storing the points of P , and a line ℓ, such that every cell of the kd-tree intersects
this line.

Problem 8. In this problem, we will consider how to use/modify range trees to answer two queries
efficiently. Throughout, P = {p1, . . . , pn} is a set of n points in R

2 (Fig. 6(a)). Your answer
should be based on range trees, you may make modifications to P including possibly trans-
forming the points and adding additional coordinates.

In each case, the various layers of your search structure (what points are stored there and how
they are sorted) and explain how your search algorithm operates. An English explanation
(as opposed to pseudocode) is sufficient. Justify your algorithm’s correctness and derive its
running time.

(a) Assume that all the points of P have positive x- and y-coordinates. In a platform-

dropping query, we are given a point q = (qx, qy) with positive coordinates. This defines
a horizontal segment running from the y-axis to q. The objective is to report the first
point p ∈ P that would be hit if we drop the platform (see Fig. 6(b)). Formally, this
point has the maximum y-coordinate such that px ≤ qx and py ≤ qy. If no point of P is
hit by the platform, the query returns null.

Hint: Your data structure should use O(n log n) storage and answer queries in O(log2 n)
time.

(b) In a max empty-triangle query you are given a point q = (qx, qy). The objective is to
compute the largest axis-parallel 45-45 right triangle that extends to the upper-right of
q and contains no point of P in its interior. The answer to the query is the point of P
that lies on the triangle’s hypotenuse (see Fig. 6(c)). (Alternatively, you can think of
this as sliding the 45◦ hypotenuse until it first hits a point of P). If the triangle can be
grown to infinite size, return null.

5

x

y

p8
p1

p2

p3

p6

p7

p9

(a) (c)

p4

p5

x

y

p8
p1

p2

p3

p6

p7

p9
p4

p5

(b)

q

x

y

p8
p1

p2

p3

p6

p7

p9
p4

p5

q

Figure 6: Platform-dropping and max empty-triangle queries.

Hint: Your data structure should useO(n log2 n) storage and answer queries inO(log3 n)
time.

Problem 9. You are designing an expandable hash table using open addressing. Let m denote
the current table size. Initially m = 4. Let us make the ideal assumption that each hash
operation takes exactly 1 time unit. After each insertion, if the number of entries in the table
is greater than or equal to 3m/4, we expand the table as follows. We allocate a new table
of size 4m, create a new hash function, and rehash all of the elements from the current table
into the new table. The time to do this expansion is 3m/4.

(a) Derive the amortized time to perform an insertion in this hash table (assuming that m
is very large). State your amortized running time and explain how you derived it. (For
fullest credit, your running time should as tight as possible.)

Hint: The amortized time need not be an integer.

(b) One approach to decrease the amortized time is to modify the table expansion factor,
which in this case is 4. In order to reduce the amortized time, should we increase or
decrease this factor? If you make this adjustment, what negative side effect (if any)
might you observe regarding the space and time performance of the data structure?
Explain briefly. (Don’t give a formal analysis)

6

CMSC 420: Fall 2022

CMSC 420 (0201) - Midterm Exam 2

Problem 1. (18 points) Hashing:

(a) (9 points) Show the results of inserting the sequence “X” then “Y” then “Z” into the hash
table shown in Fig. 1(a), assuming quadratic probing. The operations are performed as

a sequence (that is, prior insertions affect later ones). Indicate the number of probes,
that is, array accesses. (The final insertion counts as a probe.) If the operation fails,
give the number of probes as “∞”.

(b) (9 points) Repeat (a) with the hash table shown in Fig. 1(b) assuming double hashing,
where g() is the jump size.

0 1 2 3 4 5 6 7 8 9

A BC DE

insert("Z") h("Z") = 4

insert("Y") h("Y") = 9

insert("X") h("X") = 3

(a) Quadratic Probing

insert("Z") h("Z") = 5; g("Z") = 2

insert("Y") h("Y") = 5; g("Y") = 4

insert("X") h("X") = 4; g("X") = 6

(b) Double Hashing

0 1 2 3 4 5 6 7 8 9

A BC DEF

Figure 1: Hashing.

Problem 2. (32 points) Short answer questions. No explanations required.

(a) (8 points) What are the min and max number of nodes in an AVL tree of height 2?

(b) (4 points) Which data structure did we see this semester that used the operation of key
rotation (also called adoption) to maintain its structure?

(c) (4 points) You have a skip list with n nodes. Suppose that rather than using a fair coin
to decide a node’s height, you instead use a coin that comes up heads with probability
1/3 and tails with probability 2/3. All nodes start at level 0, and a node survives to
the next higher level if the coin toss comes up heads. As a function of n, what is the
expected number of nodes that survive to level 2?

(d) (8 points) Suppose you store 20 points in R
2 in an extended kd-tree with a bucket size of

two (as in Programming Assignment 2). What are the minimum and maximum number
of internal nodes this tree might have?

(e) (3 points) Among the open-addressing hashing methods we have covered (linear probing,
quadratic probing, double hashing), which does the best job of avoiding clustering?

(f) (5 points) In a hash table, what is the definition of the load factor? (Let m denote the
table size, and let n be the current number of entries.)

1

Problem 3. (10 points) You are given a standard (unbalanced) binary search tree, where each
node p has a key (p.key) and left and right child pointers (p.left and p.right).

The operation Key findUp(Key x) returns the smallest key in the tree whose value is greater
than or equal to x. If x appears in the tree, it returns x, and if all the keys in the tree are
strictly smaller than x, it returns null (see Fig. 2).

6

15

3

4

7

10

1

14

17

19

25

11 28

30

23

findUp(3) = 3

findUp(8) = 10

findUp(24) = 25

findUp(31) = null

root

Figure 2: Find-up queries.

Present pseudocode for this function. Briefly explain how your function works. For full credit,
your function should run in time O(h), where h is the height of the tree. As always, you may
create whatever helper functions you like, but you cannot alter the tree structure (e.g., you
may not assume there are parent links or threads).

Problem 4. (15 points) You are given a set P = {p1, . . . , pn} of n points in R
2 stored in a kd-

tree. Assume that every node p of the tree stores a point (p.point), its cutting dimension
(p.cutDim), its cutting value (p.cutVal), and its size (p.size), which is defined to be the
number of points in the subtree rooted at p. Assume that all the points are contained in a
bounding box bbox (see Fig. 3(a)).

In a circular range counting query (CRC), you are given a center point c = (cx, cy) and a
radius r, and the problem is count the number of points of P that lie within the circular disk
of radius r centered at c (see Fig. 3(b)).

x

y

(a)

bbox

(b)

c
r

Answer = 6

Rpt

maxDist(pt,R)

minDist(pt, R)

(c)

Figure 3: Circular range counting (CRC) queries.

(a) (10 points) Give pseudocode for an efficient algorithm, int crc(Point c, double r)

for answering this CRC queries in the kd-tree.

Hint: Create a recursive helper function and explain how it is initially called. You may
assume you have access to any geometric primitives you like (for example):

2

❼ double dist(Point pt, Point q): Distance between pt and q

❼ double minDist(Point pt, Rectangle R): Minimum distance between pt and R

❼ double maxDist(Point pt, Rectangle R): Maximum distance between pt and R

(b) (3 points) No doubt, your algorithm is as efficient as possible for a kd-tree. But, what
is the worst-case query time of your algorithm?

You may make the “standard assumptions” that the cutting dimensions alternate and
the tree is well-balanced. Select the best option below. (No justification needed.)

(1) O(log n)

(2) O(
√
n), irrespective of the number of points in the disk

(3) O(
√
n+ k), where k is the number of points in the circular disk

(4) O(n)

(5) O(n log n)

(6) None of the above. (Indicate what you think it should be)

(c) (2 points) Suppose that your query algorithm reports that there are zero points of P in
the circular disk. What is the worst case query time subject to this condition? (Same
choices as in (b).)

Problem 5. (10 points) You are given a set P = {p1, . . . , pn} of n points in R
2 (see Fig. 4(a)). In

a segment sliding query, you are given a vertical line segment s, and the query returns the
first point pi ∈ P that is hit if we were to slide the segment to its right (see Fig. 4(b)). If a
point of P lies on the segment, then the answer is this point. If there is no point of P hit by
the segment, the query returns null. You may assume there are no duplicate x-coordinates.
Given a Segment object s, let s.x denote its x-coordinate, and let s.yhi and s.ylo denote
its upper and lower y-coordinates, respectively.

p8

p1 p2

p3

p4

p5

p6

p7

p9

s.x
x

y

(a) (b)

s.ylo

s.yhi

p8

p1 p2

p3

p4

p5

p6

p7

p9

Answer: p5

Figure 4: Vertical segment-sliding.

Present an efficient data structure and algorithm for answering these queries. Our objective is
a query time of O(loga n) using space O(n logb n), where a, b > 0 are small constants. Partial
credit will be given if your answer is correct, but not as efficient as it might be.

(a) (5 points) Describe your data structure and derive its space bound. (Hint: Use a variant
of range trees. You will not get any credit for a kd-tree solution. Explain what layers

3

you use, how each layer is sorted, and what auxiliary information (if any) you store in
each node.)

(b) (5 points) Explain how queries are answered and derive the query time. (Note: Pseu-
docode is not required. A high-level English description is fine.)

Problem 6. (15 points) Throughout this problem, we start with a large, perfectly balanced binary
search tree (see Fig. 5(a)). The only operations we perform are delete and find.

d

i

b

c

f

ea

h

j

k

ℓ

g m

n

o

d

ic

f

a k

ℓ

g m

n

o

(a) (b)

delete:b,e,h,jn = 15 find("m") = found

find("e") = not-found

inactive

active b

e

j

h

Figure 5: (a) A balanced binary search tree and (b) lazy deletion.

An alternative to the standard delete operation is called lazy deletion. We do not actually
remove any nodes. Instead, to delete a node, we mark this node as inactive. When we
perform a find operation, if the node found is active, we return found. But, if it is not found
or inactive, we return not-found (see Fig. 5(b)).

As we perform deletions, the tree becomes burdened with many inactive nodes—not good.
Whenever the number of inactive nodes exceeds the number active nodes, we rebuild the tree
as follows. We first traverse the tree keeping only active nodes. We then build a perfectly
balanced binary search tree containing only the active nodes (Fig. 6). Let n denote the total
number of nodes in the tree (both active and inactive).

d

i

f m

n

o

rebuild

d

i

f

a m

n

o

b

e

j

h

c g

ℓ

k

a

Figure 6: Rebuilding (with 8 inactive nodes and 7 active nodes).

We will analyze the time for find and delete. If rebuild does not occur, both delete

and find take actual time O(log n) where n is the total number of nodes (both active and
inactive). The actual time for rebuilding is O(n).

(a) (5 points) Show that the worst-case time for any find operation is O(log na), where na

is the current number of active nodes in the tree. (Note that na ≤ n, where n is the
total number of nodes.)

(b) (10 points) Derive the amortized time of lazy deletion. Express your answer asymptoti-
cally as a function of n (e.g., O(1), O(log n) or O(n).)

4

Hint: Analyze just a single run from an initial tree of size n until the next rebuilding.
Since this is asymptotic, think of n has being very large and constant factors do not
matter.

5

CMSC 420: Fall 2022

Homework 4: B-Trees, Tries, and Memory Management

Problem 1. (18 points, 6 points each) Consider the B-trees of order 4 shown in Fig. 1 below.
Recall that each non-leaf node has between 2 and 4 children, and every node has between 1
and 3 keys. Let us assume two conventions. First, key rotation (when possible) has precedence
over splitting/merging. Second, when splitting a node, if the number of keys shared by the
two new nodes is an odd number, the rightmost node receives the larger number of keys.
Note: An earlier version said “leftmost” instead of “rightmost”, but this is not

consistent with the lecture notes, so I changed it. We will grant full credit either

way you do it, as long as you apply your rule uniformly.

6 13 20

8 10 11 15 17 -- 22 24 --1 3 4

6 13 20

8 10 11 15 -- -- 22 -- --1 3 4

(a) (b)

Figure 1: B-tree operations.

(a) Show the B-tree that results after inserting the key 9 into the tree of Fig. 1(a).

(b) Show the B-tree that results after inserting the key 2 into the (original) tree of Fig. 1(a).

(c) Show the B-tree that results after deleting the key 22 from the tree of Fig. 1(b).

(Intermediate results are not required, but may be given to help assigning partial credit.)

Problem 2. (16 points, 8 points each) In this problem we will build a suffix tree for S = "aababaabaab✩".

(a) Recall that the 12 suffixes of S are (in reverse order):

S11 = "✩", S10 = "b✩", S9 = "ab✩", . . . , S0 = "aababaabaab✩".

Let idj denote the substring identifier for Sj . (Recall from Lecture 18 that this is defined
to be the shortest prefix of Sj that uniquely identifies it.) List all 12 substring identifiers
for these suffixes in index order (from first to last id0 . . . id11).

(b) Draw the suffix tree for S. Draw your tree in the same edge labeling style we used in
Fig. 7 in Lecture 18 LaTeX lecture notes. Order the children of each node in alphabetical
order from left to right. (The form of your drawing is important. There are many online
suffix-tree generators, and if it appears that you copied your answer from one of these,
you will receive no credit.)

Hint: Begin by writing out all the substring identifiers in alphabetical order, one above
the other. This makes it easy to determine common substrings.

1

Problem 3. (16 points, 8 points each) This problem involves performing operations using the
buddy system for memory allocation.

(a) Consider the buddy allocation shown in Fig. 2. Explain which blocks are split in order
to perform the operation alloc(2). Show the final blocks and indicate what level of
the structure they reside. Assume that we always split the leftmost block of sufficient
size. You may assume that the size of the final block is exactly 2, there is no need to
round the size up for the sake of adding header information. (You don’t need to redraw
everything, just the portion that changes.)

0 4 8 12 16 20 24 28 32

avail

0

1

2

3

4

36 40 44 48

(a) alloc(2)

Figure 2: Problem 4(a): Buddy system allocation.

(b) Consider the buddy allocation shown in Fig. 3. Explain which blocks are merged in
order to perform the operation dealloc(24), which deallocates the shaded block of size
1 at address 24 as shown in the figure. Show the final merged block and indicate which
level it resides at. (You don’t need to redraw everything, just the portion that changes.)

0 4 8 12 16 20 24 28 32

avail

0

1

2

3

4

(b) dealloc(24)

36 40 44 48

Figure 3: Problem 4(b): Buddy system deallocation.

2

CMSC 420: Fall 2022

Practice Problems for the Final Exam

Problem 0. Since the exam is comprehensive, please look back over the previous homework as-
signments, the two midterm exams, and the practice problems for both midterms. You should
expect at least one problem that involves tracing through an algorithm or construction given
in class.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) Let T be extended binary search tree (that is, one having internal and external nodes).
You visit the nodes of T according to one of the standard traversals (preorder, postorder,
or inorder). Which of the following statements is necessarily true? (Select all that apply.)

(i) In a postorder traversal, all the external nodes appear in the order before any of the
internal nodes

(ii) In a preorder traversal, all the internal nodes appear in the order before any of the
external nodes

(iii) In an inorder traversal, internal and external node alternate with each other

(iv) None of the above is true

(b) When we delete an entry from a simple (unbalanced) binary search tree, we sometimes
need to find a replacement key. Suppose that p is the node containing the deleted key.
Which of the following statements are true? (Select all that apply.)

(i) A replacement is needed whenever p is the root

(ii) A replacement is needed whenever p is a leaf

(iii) A replacement is needed whenever p has two non-null children

(iv) It is best to take the replacement exclusively from p’s right subtree

(v) At most one replacement is needed for each deletion operation

(c) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(d) Repeat (c) in the case of deletion. (Give your answer as an asymptotic function of n.)

(e) The AA-tree data structure has the following constraint: “Each red node can arise only

as the right child of a black node.” Which of the two restructuring operations (skew and
split) enforces this condition?

(f) Splay trees are known to support efficient finger search queries. What is a “finger search
query”?

(g) In class, we mentioned that when using double hashing, it is important that the second
hash function g(x) should not share any common divisors with the table size m. What
might go wrong if this were not the case?

1

(h) Hashing is widely regarded as the fastest of all data structures for basic dictionary
operations (insert, delete, find). Give an example of an operation that a tree-based
search structure can perform more efficiently than a hashing-based data structure, and
explain briefly.

(i) In the (unstructured) memory management system discussed in class, each available
block of memory stored the size of the block both at the beginning of the block (which
we called size) and at the end of the block (which we called size2). Why did we store
the block size at both ends?

(j) Between the classical dynamic storage allocation algorithm (with arbitrary-sized blocks)
or the buddy system (with blocks of size power of 2) which is more susceptible to internal

fragmentation? Explain briefly.

Problem 2. This problem involves an input which is a binary search tree having n nodes of height
O(log n). You may assume that each node p has a field p.size that stores the number of
nodes in its subtree (including p itself). Here is the node structure:

class Node {

int key // key

Node left, right // children

int size // number of entries in this subtree

}

(a) Present pseudocode for a function printMaxK(int k), which is given 0 ≤ k ≤ n, and
prints the values of the k largest keys in the binary search tree (see, for example, Fig. 1).

8

5

11

6

4

14

7

3

1

10

15

25

26

21

19

18 printMaxK(8) = 〈11, 14, 15, 18, 19, 21, 25, 26〉

printMaxK(2) = 〈25, 26〉

printOdd() = 〈1, 4, 6, 8, 11, 15, 19, 25〉

16

5

3

11

4

10

5

4

1 1

2

4

1

1

p.key
p.size

3

Figure 1: The functions printMaxK and printOdd.

You should do this in a single pass by traversing the relevant portion of the tree. It
would be considered cheating to store all the elements of in a list, and then just print
the last k entries of the list.

For fullest credit, the keys should be printed in ascending order, and your algorithm
should run in time O(k + log n) (see part (b) below). Briefly explain your algorithm.

Hint: I would suggest using the helper function printMaxK(Node p, int k)), where
k is the number of keys to print from the subtree rooted at p.

(b) Derive the running time of your algorithm in (a).

2

(c) Give pseudocode for a function printOdd(), which does the following. Let ⟨x1, x2, . . . , xn⟩
denote the keys of the tree in ascending order, this function prints every other key, namely
⟨x1, x3, x5, . . .⟩ (see Fig. 1).

Again, you should do this in a single pass by traversing the tree. (For example, it would
be considered cheating to traverse the tree and construct a list with all the entries, and
then only print the odd entries of your list.) Your function should run in time O(n).
Briefly explain your algorithm.

Problem 3. Throughout this problem, assume that you are given a kd-tree storing a set P of
n points in R

2. Assume the tree satisfies the standard assumptions. (That is, the cutting
dimension alternates between x and y, subtrees are balanced, and the tree stores a bounding
box bbox containing all the points of P .) You may also assume that that any geometric com-
putations on primitive objects (distances, disjointness, containment, etc.) can be computed
in constant time, without explanation.

3.6

5

7

4

−2

2.5
3

9

−1
5

Ans = 4 + 7 + 5− 2 = 14

R

Figure 2: Weighted range query.

(a) In a standard range-counting query, we want to count the number of points in the range.
Suppose that each point pi ∈ P has an associated real-valued weight wi. In a weighted

orthogonal range query, we are given a query rectangle R, given by its lower-left corner
rlo and upper-right corner rhi, and the answer is the sum of the weights of the points
that lie within R (see Fig. 2(b)). If there are no points in the range, the answer is 0.

Explain how to modify the kd-tree (by adding additional fields to the nodes, if you
like) so that weighted orthogonal range queries can be answered efficiently. Based on
your modified data structure, present an efficient algorithm in pseudo-code for answering
these queries and explain. (For full credit, your algorithm should run in O(

√
n) time).

You may handle the edge cases (e.g., points lying on the boundary of R) however you
like. Hint: You may use whatever helper function(s) you like, but I would suggest using:

double weightedRange(Rectangle R, KDNode p, Rectangle cell)

where p is the current node in the kd-tree, cell is the associated cell.

(b) Briefly analyze the running time of your algorithm, assuming that the tree is balanced.
(You may apply/modify results proved in class.)

Problem 4. As in the previous problem, assume that you are given a kd-tree storing a set P of
n points in R

2 that satisfies the standard assumptions. In a fixed-radius nearest neighbor

query, we are given a point q ∈ R
d and a radius r > 0. Consider a circular disk centered at

3

q whose radius is r. If no points of P lie within this disk, the answer to the query is null.
Otherwise, it returns the point of P within the disk that is closest to q (see Fig. 3). Present
(in pseudo-code) an efficient kd-tree algorithm that answers such a query.

q

r

p4

p2

p3

p1

p9

p6p7

p8

Answer: p3

p5

p4

p2

p3

p1

p9

p6p7

p8

q

r

Answer: null

p5

Figure 3: Faxed-radius nearest-neighbor query.

Hint: You may use whatever helper function(s) you like, but I would suggest using:

Point frnn(Point q, double r, KDNode p, Rectangle cell, Point best)

where p is the current node in the kd-tree, cell is the associated cell, and best is the best
point seen so far.

You do not need to analyze your algorithm’s running time, but explain it briefly. Your
algorithm should not waste time visiting nodes that cannot possibly contribute to the answer.

Problem 5. In this problem we will build a suffix tree for the string S = baabaabababaa✩.

(a) List the substring identifiers for the 14 suffixes of S. For the sake of uniformity, list them
in order (either back to front or front to back). For example, you could start with “✩”
and end with the substring identifier for the entire string.

(b) List the substring identifiers again together with their indices (0 through 13), but this
time in alphabetical order (where "a" < "b" < "✩").

(c) Draw a picture of the suffix tree for S. For the sake of uniformity, when drawing your
tree, use the convention of Fig. 7 in the Lecture 17 LaTeX lecture notes. In particular,
label edges of the final tree with substrings, index the suffixes from 0 to 13, and order
subtrees in ascending lexicographical order.

Problem 6. In this problem, we will consider how to use/modify range trees to answer two related
queries. While the answer should be based on range trees, you may need to make modifications
including possibly transforming the points and even adding additional coordinates. In each
case, describe the points that are stored in the range tree and how the search process works.
An English explanation (as opposed to pseudocode) is sufficient. Justify your algorithm’s
correctness and derive its running time.

(a) Assume you are given an n-element point set P in R
2 (see Fig. 4(a)). In addition to

its coordinates (px, py), each point p ∈ P is associated with a numeric rating, pz. In an
orthogonal top-k query, you are given an axis-aligned query rectangle R (given, say, by
its lower-left and upper-right corners) and a positive integer k. The query returns a list

4

of the (up to) k points of P that lie within R having the highest ratings (see Fig. 4(b)).
(As an application, imagine you are searching for the k highest rated restaurants in a
rectangular region of some city.)

(a) (b) (c)

OrthTopK(3) = {8, 9, 12}

13

5

8 5

1 12

2
9

8

R

4 1

2213

5

8 5

1 12

2
9

8
4 1

22

x

y

pz

13

5
5 510 3

29 2
4 1

22

q r1r2

AnnTopK(3) = {3, 5, 9}

Figure 4: Orthogonal top-k queries and annulus top-k queries.

Describe how to preprocess the point set P into a data structure that can efficiently
answer any orthogonal top-k query (R, k). Your data structure should use O(n log2 n)
storage and answer queries in at most O(k log2 n) time. (I don’t care how you handle
edge cases, such as points lying on the boundary of the rectangle or points having the
same rating.) If there are k points or fewer in the query region, the list will contain
them all.

(b) In an annulus top-k query a query is given by a query point q ∈ R
2 and two positive

radii r1 < r2. Let S1 = S(q, r1) be the square centered at q whose half side length is r1
and define S2 similarly for q and r2. The square annulus A(q, r1, r2) is defined to be the
region between these two squares. The query returns a list of the (up to) k points of P
that lie within the annulus A(q, r1, r2) that have the highest ratings (see Fig. 4(c)).

Problem 7. In this problem, we are given a set L of n horizontal line segments siti in the plane,
where si = (x−i , yi) and ti = (x+i , yi) (Fig. 5(a–b)). We want to preprocess them to answer
the following queries efficiently:

Segment stabbing queries: Consider a vertical query line segment with x-coordinate qx,
whose lower endpoint has the y-coordinate q−y , and whose upper endpoint has y-coordinate
q+y . How many of the segments of L does this segment intersect? (For example, the ver-
tical segment in Fig. 5(c) intersects 5 segments of L.)

Answer the following for the query vertical query (qx, q
−

y , q
+
y) and horizontal segment siti.

(Hint: To simplify your answer, you may assume that all the coordinates are distinct, so the
endpoint of one segment will never lie in the interior of another.)

(a) Describe a range tree-based data structure for this problem and derive its space bound.
(Query processing comes later.)

(b) Explain how segment-stabbing queries are answered and derive the query time.

Problem 8. Suppose you have a large span of memory, which starts at some address start and
ends at address end-1 (see Fig. 6). (The variables start and end are generic pointers of type

5

x

y

x

y

Answer: 5

qx

q−y

q+y

si ti

(b) (c)

x

y

si ti

(a)
x+
ix−

i

yi

Figure 5: Segment stabbing queries.

void*.) As the dynamic memory allocation method of Lecture 15, this span is subdivided
into blocks. The block starting at address p is associated with the following information:

❼ p.inUse is 1 if this block is in-use (allocated) and 0 otherwise (available)

❼ p.prevInUse is 1 if the block immediately preceeding this block in memory is in-use.
(It should be 1 for the first block.)

❼ p.size is the number of words in this block (including all header fields)

❼ p.size2 each available block has a copy of the size stored in its last word, which is
located at address p + p.size - 1.

(For this problem, we will ignore the available-list pointers p.prev and p.next.)

0
1

5
0

5
0

0
1

2
0

0
1

8
0

8
0

1
3
0

0
1

5
0

5
0

0
1

1
8
0

1
8
0

Initial:

50 20 80 5030

180

start end

0
1

2
0

1

20

1
1

2
0

20

1
1

2
0

20

1
3
0

30

1

return

compact(start, end)

Figure 6: Memory compactor.

In class, we said that in real memory-allocation systems, blocks cannot be moved, because they
may contain pointers. Suppose, however, that the blocks are movable. Present pseudo-code
for a function that compacts memory by copying all the allocated blocks to a single contiguous
span of blocks at the start of the memory span (see Fig. 6). Your function compress(void*

start, void* end) should return a pointer to the head of the available block at the end.
Following these blocks is a single available block that covers the rest of the memory’s span.

To help copy blocks of memory around, you may assume that you have access to a function
void* memcpy(void* dest, void* source, int num), which copies num words of memory

6

from the address source to the address dest.

Problem 9. Recall the buddy system of allocating blocks of memory (see Fig. 7). Throughout
this problem you may use the following standard bit-wise operators:

& bit-wise “and” | bit-wise “or”
^ bit-wise “exclusive-or” ~ bit-wise “complement”
<< left shift (filling with zeros) >> right shift (filling with zeros)

You may also assume that you have access to a function bitMask(k), which returns a binary
number whose k lowest-order bits are all 1’s. For example bitMask(3) = 1112 = 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

Level

0 2 4 6 8 10 12 14

0 4 8 12

0 8

0

Figure 7: Buddy relatives.

Present a short (one-line) expression for each of the following functions in terms of the above
bit-wise functions:

(a) boolean isValid(int k, int x): True if and only if x ≥ 0 a valid starting address
for a buddy block at level k ≥ 0.

(b) int sibling(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its sibling (that is, its “buddy”).

(c) int parent(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its parent at level k + 1.

(d) int left(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its left child at level k − 1.

(e) int right(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its right child at level k − 1.

For example, given the tree shown in the figure, we have

isValid(2, 12) = isValid(2, 01100) = True

isValid(2, 10) = isValid(2, 01010) = False

sibling(2, 12) = sibling(2, 01100) = 8 = 01000

parent(2, 12) = parent(2, 01100) = 8 = 01000

left(2, 12) = left(2, 01100) = 12 = 01100

right(2, 12) = right(2, 01100) = 14 = 01110

7

Problem 10. This problem involves a data structure called an erasable stack. This data structure
is just a stack with an additional operation that allows us to “erase” any element that is
currently in the stack. Whenever we pop the stack, we skip over the erased elements, re-
turning the topmost “unerased” element. The pseudocode below provides more details be
implemented.

class EStack { // erasable stack of Objects

int top // index of stack top

Object A[HUGE] // array is so big, we will never overflow

Object ERASED // special object which indicates an element is erased

EStack() { top = -1 } // initialize

void push(Object x) { // push

A[++top] = x

}

void erase(int i) { // erase (assume 0 <= i <= top)

A[i] = ERASED

}

Object pop() { // pop (skipping erased items)

while (top >= 0 && A[top] == ERASED) top--

if (top >= 0) return A[top--]

else return null

}

}

Let n = top + 1 denote the current number of entries in the stack (including the ERASED

entries). Define the actual cost of operations as follows: push and erase both run in 1 unit
of time and pop takes k + 1 units of time where k is the number of ERASED elements that
were skipped over.

(a) As a function of n, what is the worst-case running time of the pop operation? (For
fullest credit, make your bound as tight as possible.) Justify your answer.

(b) Starting with an empty stack, we perform a sequence of m push, erase, and pop oper-
ations. Give an upper bound on the amortized running time of such as sequence. You
may assume that all the operations are valid and the array never overflows. (For fullest
credit, make your bound as tight as possible.) Justify your answer.

(c) Given two (large) integers k and m, where k ≤ m/2, we start from an empty stack,
push m elements, and then erase k elements at random, finally we perform a single pop
operation. What is the expected running time of the final pop operation. You may
express your answer asymptotically as a function of k and m.

In each case, state your answer first, and then provide your justification.

Problem 11. You are designing an expandable hash table using open addressing. Let m denote
the current table size. Initially m = 4. Let us make the ideal assumption that each hash

8

operation takes exactly 1 time unit. After each insertion, if the number of entries in the table
is greater than or equal to 3m/4, we expand the table as follows. We allocate a new table
of size 4m, create a new hash function, and rehash all of the elements from the current table
into the new table. The time to do this expansion is 3m/4.

(a) Derive the amortized time to perform an insertion in this hash table (assuming that m
is very large). State your amortized running time and explain how you derived it. (For
fullest credit, your running time should as tight as possible.)

Hint: The amortized time need not be an integer.

(b) One approach to decrease the amortized time is to modify the table expansion factor,
which in this case is 4. In order to reduce the amortized time, should we increase or
decrease this factor? If you make this adjustment, what negative side effect (if any)
might you observe regarding the space and time performance of the data structure?
Explain briefly.

‘

9

CMSC 420: Fall 2022

CMSC 420 (0201) - Final Exam

This exam is closed-book and closed-notes. You may use three sheets of notes (front and back).
Write all answers on the exam paper. You may use any algorithms or results given in class. If
you have a question, either raise your hand or come to the front of class. Total point value is 120
points. Good luck!

Problem 1. (50 points) Short answer questions. Unless requested, explanations are not required,
but may be given to help with partial credit.

(a) (2 points) You have an inorder-threaded binary tree with n nodes. Let u be an arbitrary
non-leaf node in this tree. True or False: There must be at least one thread that points
into u.

(b) (4 points) Let T be an extended binary search tree (that is, one having internal and
external nodes). You visit the nodes of T according to one of the standard traversals
(preorder, postorder, or inorder). Which of the following statements is necessarily true?
(Select all that apply.)

(1) Preorder traversal : All the internal nodes appear before any of the external nodes

(2) Inorder traversal : Internal and external nodes alternate with each other

(3) Postorder traversal : The first node visited is an external node

(4) Postorder traversal : The last node visited is an internal node

(c) (4 points) When we delete an entry from a simple (unbalanced) binary search tree, we
sometimes need to find a replacement key. Suppose that p is the node containing the
deleted key. Which of the following statements are true? (Select all that apply.)

(1) A replacement is needed whenever p is the root

(2) A replacement is needed whenever p is a leaf

(3) A replacement is needed whenever p has two non-null children

(4) At most one replacement is needed for each deletion operation

(d) (4 points) You build a union-find data structure for a set of n objects. Initially, each
element is in a set by itself. You then perform k union operations, where k < n. Each
operation merges two different sets. Can the number of union-find trees be determined
from k and n alone? If not, answer “It depends”. If so, give the number of trees as a
function of k and n.

(e) (4 points) Given a binary max-heap with n entries (n ≥ 3), you want to return the third
largest item in the heap (without modifying its contents). What is the minimum number
of heap entries that you might need to inspect to be certain that the third largest item
is among them?

(f) (8 points) What are the min and max number of nodes in a 2-3 tree of height 2? (Re-
member, height is the number of edges from the root to the deepest leaf.)

(g) (4 points) You have just performed a deletion from a 2-3 tree of height h. As a function
of h, what is the maximum number of key-rotations (adoptions) that might be needed
as a result?

1

(h) (4 points) You have just inserted a key into an AA tree having L levels. As a function of
L, what is the maximum number of skew operations that might be needed as a result?
(Here we are only counting skew operations that have an effect on the structure, in the
sense that a rotation is performed.)

(i) (4 points) You have just inserted n (distinct) keys into a treap. As a function of n, what
is the probability that the smallest of the n keys is located at the root of the tree?

(1) 0 (That is, it cannot happen)

(2) Roughly 1/n (By “roughly”, we mean “up to constant factors”)

(3) Roughly 1/(log n)

(4) Roughly 1/2n

(5) Roughly 1/(n!)

(j) (2 points) The AA-tree data structure has the following constraint: “The left child of any

node must be black.” Which of the following operations is invoked when this condition
is violated?

(k) (4 points) You have a skip list containing n keys, where n is a very large number. Suppose
you perform a find operation. The search algorithm visits one or more nodes at each
level of the structure. How many nodes do you expect to visit at level 4 of the search
structure? (Select one.)

(1) O(1)

(2) O(log n)

(3) O(n/(24))

(4) All of them

(5) None of the above

(l) (4 points) You have a skip list with n nodes. Suppose that rather than using a fair coin
to decide a node’s height, you instead use a coin that comes up heads with probability
3/4 and tails with probability 1/4. All nodes start at level 0, and a node survives to
the next higher level if the coin toss comes up heads. As a function of n, what is the
expected number of nodes that survive to level 2?

(m) (2 points) A node in a B-tree has too many children. Suppose that it is possible to resolve
this either by splitting or key-rotation (adoption). Which is preferred? (No explanation
needed.)

Problem 2. (15 points) In this problem, we will assume that we have a standard (unbalanced)
binary search tree. Each node stores a key, left and right child links, and one additional
field, size, which indicates the number of nodes in the subtree rooted at the current node.

(a) (5 points) Present pseudo-code for an operation Node rotateLeft(Node p), which per-
forms a left rotation at the given node p, and also updates the size values for all nodes
whose sizes are affected by the rotation. It returns the node that takes the place of p
after the rotation. You may assume that p.right is not null and all the size values are
valid prior to the rotation. For full credit this should run in O(1) time.

(b) (10 points) Present pseudo-code for an operation Key getKth(int k). Given an integer
k ≥ 1, it returns the kth smallest key in the tree. If the tree has fewer than k keys,

2

c

b

e

s

rj

i

k

g

n

c

b k

e

g

j

i

s

r

n

10

81

1

1

1

2

6

3

1

rotateLeft(g) 10

1

1

3

1

8

1

1

2

4

size

getKth(8) = "n"

getKth(3) = "e"

getKth(0) = null

getKth(11) = null

getKth(1) = "b"
updated

returned

Figure 1: rotateLeft and getKth.

this should return null. (Hint: Write a helper function Key getKth(int k, Node p),
which returns the value of the kth smallest key in the subtree rooted at p.) Briefly
explain how your function works. For full credit, this should run in time proportional
to the height of the tree, independent of the value of k (which may be very large).

Problem 3. (10 points) Consider the following set of strings over the alphabet {a, b}.

S0 = aaa

S1 = aabaabaab

S2 = aabaabb

S3 = aabab

S4 = bab

S5 = bba

Draw the Patricia trie for {S0, . . . , S5}. (Remember that such a trie uses path compression
whenever possible.) Draw your tree using the convention given in class, where each edge is
labeled with the substring it matches. For consistency, order the children of each node in
alphabetical order from left to right. Label the external nodes with integers 0 to 5 according
to which string this is.

Problem 4. (10 points, 5 points each) This problem involves performing operations using the
buddy system for memory allocation.

(a) Consider the buddy allocation shown in Fig. 2. Explain which blocks are split in order
to perform the operation alloc(2). Show the final blocks and indicate what level of
the structure they reside. Assume that we always split the leftmost block of sufficient
size. You may assume that the size of the final block is exactly 2, there is no need to
round the size up for the sake of adding header information. (You don’t need to redraw
everything, just the portion that changes.)

(b) Consider the buddy allocation shown in Fig. 3. Explain which blocks are merged in
order to perform the operation dealloc(26), which deallocates the shaded block of size
1 at address 26 as shown in the figure. Show the final merged block and indicate which
level it resides at. (You don’t need to redraw everything, just the portion that changes.)

Problem 5. (15 points) The local weather service measures and stores temperatures throughout
the day over many decades. (This is a lot of data!) Many people are interested in climate

3

0 4 8 12 16 20 24 28 32

avail

0

1

2

3

4

36 40 44 48

(a) alloc(2)

Figure 2: Buddy system allocation.

0 4 8 12 16 20 24 28 32

avail

0

1

2

3

4

(b) dealloc(26)

36 40 44 48

Figure 3: Buddy system deallocation.

change, and they are often asked temperature queries of the form: “When was the last time
prior to 11:00am, June 16, 2022 when the temperature exceeded 105◦?”

This can be modeled as a 2-dimensional retrieval problem. You are given a set of n points
(x, y), where x represents the date and time of the measurement (encoded as a real number)
and y denotes the temperature at that date and time (see Fig. 4, left).

date and time (number)

te
m
p
er
at
u
re

d

t (d,t)

Answer

te
m
p
er
at
u
re

Figure 4: Temperature data and temperature queries.

Let us assume that these points are stored in a standard 2-dimensional kd-tree.

(a) (10 points) Present pseudocode for an efficient function that answers temperature queries.
Given a pair (d, t), where d is a date/time (encoded as a real) and t is a temperature,

4

the query returns the date/time on or before d such that the temperature at that time
was greater than or equal to t (see Fig. 4, right).

Assume a standard kd-tree (cutting dimensions alternate and the tree is well-balanced).
For full credit, your algorithm should not visit any nodes that obviously cannot con-
tribute to the final answer. You may assume any geometric primitive operations you
like.

Hint: You can use any helper, but here is a suggestion:

double tempQuery(double d, double t, KDNode p, Rect cell, double best)

where d is the query date/time, t is the query temperature, p is the current node of the
kd-tree, cell is the rectangular cell associated with p, and best is the best answer so
far.

Checklist:

❼ Handle the case when p == null?

❼ Check whether the cell is relevant?

❼ Process p.point?

❼ Order of recursive calls?

❼ Initial call to your helper?

(b) (5 points) What is the running time of your algorithm? (No explanation needed.)

Problem 6. (10 points, 5 points each) This is a repeat of Problem 5 (Temperature Queries), but
this time, explain how to solve it using range trees.

(a) Briefly describe your data structure and derive its space bound. (What layers are used?
How is each sorted? What auxiliary data, if any, is stored in each node?)

(b) Briefly explain how queries are answered and derive the query time.

Problem 7. (10 points) Suppose that we are given a set of n items (initially each item in its own
set), and we perform a sequence of m unions and finds (using height-balanced unions and
path-compression finds as given in class). Further, suppose that all the unions occur before

any of the finds. Prove that after initialization, the resulting sequence takes O(m) time to
execute (rather than the O(m · α(m,n)) time given in class).

7

121

811 2

4

913

510

6

1 2 13

unions finds

7

121

811

2

4

313 59 106

3

Figure 5: Unions before finds.

Hint: Classify the links of the Union-Find tree as being of two types: (1) those that point
directly to a root node and (2) those that point to a non-root node. Start by proving that
for any k ≥ 1, if a find traverses k links, then k− 1 links in the tree switch from type-(2) to
type-(1).

5

