
CMSC 420: Fall 2022

CMSC 420 (0201) - Midterm Exam 1

Problem 1. (10 points)

(a) (5 points) Show the final tree that results from performing splay(5) to the tree shown
below. For assigning partial credit, indicate which nodes are involved in your zig-zig,
zig-zag, and zig rotations.

26

9

22

13

152

12

8

5

1

splay(5)

19

26

9

22

13

152

12

8

5

1

insert(14)

19

Figure 1: Splay tree operations.

(b) (5 points) Show the final tree that results from performing insert(14) to the tree shown
below. For assigning partial credit, indicate which nodes are involved in your zig-zig,
zig-zag, and zig rotations

Problem 2. (35 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(a) (4 points) You have an inorder-threaded binary tree with n nodes. Let u be an arbitrary
non-leaf node in this tree. True or False: There must be at least one thread that points
into u.

(b) (5 points) You perform a preorder traversal of a full binary tree with n nodes. You have
a counter that is incremented whenever you visit a leaf node and decremented whenever
you visit an internal node. As function of n, what are the maximum and minimum
values that this counter might achieve at any point in the traversal? (This is taken over
all possible full binary trees with n nodes.)

(c) (5 points) You build a union-find data structure for a set of n objects. Initially, each
element is in a set by itself. You then perform k union operations, where k < n. Each
operation merges two different sets. Can the number of union-find trees be determined
from k and n alone? If not, answer “It depends”. If so, give the number of trees as a
function of k and n.

1



(d) (5 points) Your boss asks you to program a new function for your leftist heap. Given
a leftist heap with n entries, the operation returns the third smallest item in the heap
(without modifying its contents). What is the minimum number of heap entries that
you might need to inspect to be certain that the third smallest item is among them?

(e) (4 points) You have just performed an insert into a 2-3 tree of height h. What is the
maximum number of split operations that might be needed as a result?

(f) (4 points) You have just inserted n (distinct) keys into a treap. As a function of n, what
is the probability that the smallest of the n keys is located at the root of the tree?

(1) 0 (That is, it cannot happen)

(2) Roughly 1/n (By “roughly”, we mean “up to constant factors”)

(3) Roughly 1/(log n)

(4) Roughly 1/2n

(5) Roughly 1/(n!)

(g) (4 points) You have a skiplist containing n keys, where n is a very large number. Suppose
you perform a find operation. The search algorithm visits one or more nodes at each
level of the structure. How many nodes do you expect to visit at level 4 of the search
structure?

(1) None of them

(2) O(1)

(3) O(log n)

(4) O(n/(24))

(5) All of them

(h) (4 points) You have just inserted a key into an AA tree having h levels. What is the
maximum number of skew operations that might be needed as a result? (Here we are
only counting skew operations that have an effect on the structure, in the sense that a
rotation is performed.)

Problem 3. (15 points) In this problem, we assume that we are given a tree-based heap structure,
which is represented by a binary tree (not necessarily complete nor leftist). Each node u

stores three things, its priority, u.key, and the pointers to its subtrees, u.left and u.right.
The keys are min-heap ordered (that is, a node’s key is never smaller than its parent). There
are no NPL values.

(a) (5 points) Present pseudocode for a function swapRight(Node u) which is given a pointer
to the root of a tree. It traverses the right chain of this tree and swaps the left and right
subtrees of all nodes along this chain (see the figure below). It returns a pointer to
the resulting tree. For full credit, your function should run in time proportional to the
length of the right chain in the tree.

(b) (10 points) Present pseudocode for a function swapMerge(Node u, Node v), which is
given pointers to the roots of two trees. It merges the right chains of these two trees
according to min-heap order, and then performs swapRight on the resulting tree (see
the figure below). It returns a pointer to the resulting tree.

2



3

5

8

10

20

7

13 11

27 14

3

5

8

10

20

7

13

14

11

27

swapRight

2735 2735

u : Final

Figure 2: The function swapRight.

For full credit, your function should do this in one pass. That is, it is allowed to
recurse down and return up, but that is all. For half credit, you can do it in two passes
(one pass to merge and one pass to swap). You may use swapRight from (a).

192735

3 5

8 1020 7

1311

27

14

3

5

8

10

20

7

13 11

27 14

192735

Merge

19

3

5

8

10

20

7

13

14

11

27

2735

right chains

swapRightu : v : Final

Figure 3: The function swapMerge.

Problem 4. (25 points) This problem involves the analysis of two new tree structures, called the
X-tree and Y-tree, which are defined recursively in terms of each other. Let Xh and Yh denote
the X-tree and Y-tree of height h, respectively. X0 and Y0 are both defined to be a single
node. For h ≥ 1, Xh consists of a root node whose left child is null and whose right child is
Yh−1. The tree Yh consists of a root node whose left and right children are both Xh−1 (see
the figure below).

3



X0 Y0 Xh

Yh−1

Yh

Xh−1Xh−1

X1 Y1 X2 Y2

x(1) = 2 y(1) = 3 x(2) = 4 y(2) = 5

(a) (3 points) Draw a picture of X3 and a picture of Y3. (You don’t need to draw the null
pointers.)

(b) (8 points) Let x(h) and y(h) denote the number of nodes in Xh and Yh, respectively
(see the figure above). Clearly x(0) = y(0) = 1. Assuming h ≥ 1, give a formula that
expresses x(h) as a function of y(h − 1), and a formula that expresses y(h) in terms of
x(h− 1). Hint: The formulas are simple and do not involve any summations.

(c) (4 points) Assuming h ≥ 1, give a formula that expresses x(h) as a function of x(h− 2).
Hint: The formula is simple and does not involve any summations.

(d) (10 points) Prove that if h is even, x(h) = 3 · 2h/2 − 2.

Problem 5. (15 points) This is an extension of the Homework 1 problem on the dual stack, which
stores two stacks in a single array. Recall that we are given an array A of length m, one of
the stacks starts at index 0 and grows upwards and the other starts at index m−1 and grows
downwards. Initially, the array has space for two entries (m = 2), and both stacks are empty.

Assuming we have space, each single operation has an actual cost of +1 unit. Whenever
we run out of space, we expand the array as follows. Let n1 and n2 denote the numbers of
elements in the two stacks. We allocate a new array of size m′ = w ·max(n1, n2), for some
integer constant w. (In Homework 1, w = 3, but here it will be a parameter that we can
adjust). The actual cost of the expansion is equal to the total number of elements copied,
that is, n1 + n2 (see Fig. 4).

top2
top1

A[20]

top2

top1

n2 = 5

n1 = 3

A[8] copy

copy

Figure 4: Expanding dual stack, where w = 4. When we run out of space, we allocate a new array
of size w ·max(n1, n2) = w · 5 = 20. The actual cost is +8 for the copy and +1 for the final push.

(a) (3 points) Suppose that we have just performed a reallocation. Our current array is of
size n1+n2 = m, and our new array is of sizem′ = w·max(n1, n2). What is the minimum
number of stack operations until the new array needs to expand again? Express your
answer as a function of some combination of m, m′, and/or w. Briefly explain.

4



(b) (8 points) Derive the smallest constant c such that the amortized cost of our expanding
dual stack is at most c and prove the correctness of your answer. (The value of c will
depend on w.)

(c) (4 points) How small can w be before the amortized cost is no longer bounded by a
constant? Briefly explain. (Remember that we required that w is an integer.)

5


