
CMSC 420: Fall 2022

CMSC 420 (0201) - Midterm Exam 2

Problem 1. (18 points) Hashing:

(a) (9 points) Show the results of inserting the sequence “X” then “Y” then “Z” into the hash
table shown in Fig. 1(a), assuming quadratic probing. The operations are performed as
a sequence (that is, prior insertions affect later ones). Indicate the number of probes,
that is, array accesses. (The final insertion counts as a probe.) If the operation fails,
give the number of probes as “∞”.

(b) (9 points) Repeat (a) with the hash table shown in Fig. 1(b) assuming double hashing,
where g() is the jump size.

0 1 2 3 4 5 6 7 8 9

A BC DE

insert("Z") h("Z") = 4

insert("Y") h("Y") = 9

insert("X") h("X") = 3

(a) Quadratic Probing

insert("Z") h("Z") = 5; g("Z") = 2

insert("Y") h("Y") = 5; g("Y") = 4

insert("X") h("X") = 4; g("X") = 6

(b) Double Hashing

0 1 2 3 4 5 6 7 8 9

A BC DEF

Figure 1: Hashing.

Problem 2. (32 points) Short answer questions. No explanations required.

(a) (8 points) What are the min and max number of nodes in an AVL tree of height 2?

(b) (4 points) Which data structure did we see this semester that used the operation of key
rotation (also called adoption) to maintain its structure?

(c) (4 points) You have a skip list with n nodes. Suppose that rather than using a fair coin
to decide a node’s height, you instead use a coin that comes up heads with probability
1/3 and tails with probability 2/3. All nodes start at level 0, and a node survives to
the next higher level if the coin toss comes up heads. As a function of n, what is the
expected number of nodes that survive to level 2?

(d) (8 points) Suppose you store 20 points in R2 in an extended kd-tree with a bucket size of
two (as in Programming Assignment 2). What are the minimum and maximum number
of internal nodes this tree might have?

(e) (3 points) Among the open-addressing hashing methods we have covered (linear probing,
quadratic probing, double hashing), which does the best job of avoiding clustering?

(f) (5 points) In a hash table, what is the definition of the load factor? (Let m denote the
table size, and let n be the current number of entries.)

1



Problem 3. (10 points) You are given a standard (unbalanced) binary search tree, where each
node p has a key (p.key) and left and right child pointers (p.left and p.right).

The operation Key findUp(Key x) returns the smallest key in the tree whose value is greater
than or equal to x. If x appears in the tree, it returns x, and if all the keys in the tree are
strictly smaller than x, it returns null (see Fig. 2).

6

15

3

4

7

10

1

14

17

19

25

11 28

30

23

findUp(3) = 3

findUp(8) = 10

findUp(24) = 25

findUp(31) = null

root

Figure 2: Find-up queries.

Present pseudocode for this function. Briefly explain how your function works. For full credit,
your function should run in time O(h), where h is the height of the tree. As always, you may
create whatever helper functions you like, but you cannot alter the tree structure (e.g., you
may not assume there are parent links or threads).

Problem 4. (15 points) You are given a set P = {p1, . . . , pn} of n points in R2 stored in a kd-
tree. Assume that every node p of the tree stores a point (p.point), its cutting dimension
(p.cutDim), its cutting value (p.cutVal), and its size (p.size), which is defined to be the
number of points in the subtree rooted at p. Assume that all the points are contained in a
bounding box bbox (see Fig. 3(a)).

In a circular range counting query (CRC), you are given a center point c = (cx, cy) and a
radius r, and the problem is count the number of points of P that lie within the circular disk
of radius r centered at c (see Fig. 3(b)).

x

y

(a)

bbox

(b)

cr

Answer = 6

Rpt

maxDist(pt,R)

minDist(pt, R)

(c)

Figure 3: Circular range counting (CRC) queries.

(a) (10 points) Give pseudocode for an efficient algorithm, int crc(Point c, double r)

for answering this CRC queries in the kd-tree.

Hint: Create a recursive helper function and explain how it is initially called. You may
assume you have access to any geometric primitives you like (for example):

2



� double dist(Point pt, Point q): Distance between pt and q

� double minDist(Point pt, Rectangle R): Minimum distance between pt and R

� double maxDist(Point pt, Rectangle R): Maximum distance between pt and R

(b) (3 points) No doubt, your algorithm is as efficient as possible for a kd-tree. But, what
is the worst-case query time of your algorithm?

You may make the “standard assumptions” that the cutting dimensions alternate and
the tree is well-balanced. Select the best option below. (No justification needed.)

(1) O(log n)

(2) O(
√
n), irrespective of the number of points in the disk

(3) O(
√
n+ k), where k is the number of points in the circular disk

(4) O(n)

(5) O(n log n)

(6) None of the above. (Indicate what you think it should be)

(c) (2 points) Suppose that your query algorithm reports that there are zero points of P in
the circular disk. What is the worst case query time subject to this condition? (Same
choices as in (b).)

Problem 5. (10 points) You are given a set P = {p1, . . . , pn} of n points in R2 (see Fig. 4(a)). In
a segment sliding query, you are given a vertical line segment s, and the query returns the
first point pi ∈ P that is hit if we were to slide the segment to its right (see Fig. 4(b)). If a
point of P lies on the segment, then the answer is this point. If there is no point of P hit by
the segment, the query returns null. You may assume there are no duplicate x-coordinates.
Given a Segment object s, let s.x denote its x-coordinate, and let s.yhi and s.ylo denote
its upper and lower y-coordinates, respectively.

p8

p1 p2

p3

p4

p5

p6
p7

p9

s.x
x

y

(a) (b)

s.ylo

s.yhi

p8

p1 p2

p3

p4

p5

p6
p7

p9

Answer: p5

Figure 4: Vertical segment-sliding.

Present an efficient data structure and algorithm for answering these queries. Our objective is
a query time of O(loga n) using space O(n logb n), where a, b > 0 are small constants. Partial
credit will be given if your answer is correct, but not as efficient as it might be.

(a) (5 points) Describe your data structure and derive its space bound. (Hint: Use a variant
of range trees. You will not get any credit for a kd-tree solution. Explain what layers

3



you use, how each layer is sorted, and what auxiliary information (if any) you store in
each node.)

(b) (5 points) Explain how queries are answered and derive the query time. (Note: Pseu-
docode is not required. A high-level English description is fine.)

Problem 6. (15 points) Throughout this problem, we start with a large, perfectly balanced binary
search tree (see Fig. 5(a)). The only operations we perform are delete and find.

d

i

b

c

f

ea

h

j

k

ℓ

g m

n

o

d

ic

f

a k

ℓ

g m

n

o

(a) (b)

delete:b,e,h,jn = 15 find("m") = found

find("e") = not-found

inactive

active b

e

j

h

Figure 5: (a) A balanced binary search tree and (b) lazy deletion.

An alternative to the standard delete operation is called lazy deletion. We do not actually
remove any nodes. Instead, to delete a node, we mark this node as inactive. When we
perform a find operation, if the node found is active, we return found. But, if it is not found
or inactive, we return not-found (see Fig. 5(b)).

As we perform deletions, the tree becomes burdened with many inactive nodes—not good.
Whenever the number of inactive nodes exceeds the number active nodes, we rebuild the tree
as follows. We first traverse the tree keeping only active nodes. We then build a perfectly
balanced binary search tree containing only the active nodes (Fig. 6). Let n denote the total
number of nodes in the tree (both active and inactive).

d

i

f m

n

o

rebuild

d

i

f

a m

n

o

b

e

j

h

c g

ℓ

k

a

Figure 6: Rebuilding (with 8 inactive nodes and 7 active nodes).

We will analyze the time for find and delete. If rebuild does not occur, both delete

and find take actual time O(log n) where n is the total number of nodes (both active and
inactive). The actual time for rebuilding is O(n).

(a) (5 points) Show that the worst-case time for any find operation is O(log na), where na

is the current number of active nodes in the tree. (Note that na ≤ n, where n is the
total number of nodes.)

(b) (10 points) Derive the amortized time of lazy deletion. Express your answer asymptoti-
cally as a function of n (e.g., O(1), O(log n) or O(n).)

4



Hint: Analyze just a single run from an initial tree of size n until the next rebuilding.
Since this is asymptotic, think of n has being very large and constant factors do not
matter.

5


