
CMSC 420: Fall 2022

Homework 3: Geometric Search and Hashing

Handed out Tue, Nov 8. Due Tue, Nov 15, 9:30am (that is, by the start of class).

Important! Solutions will be discussed in class right after the due date, so no late submissions
will be accepted. Turn in whatever you have completed by the due date.

Problem 1. (10 points) Consider the kd-tree shown in Fig. 1. Assume that the cutting dimensions
alternate between x and y.
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Figure 1: kd-tree operations.

(a) (5 points) Show the result of inserting (30, 30) into this tree. As in Fig. 1 show both the
tree structure (with cutting directions indicated) and the subdivision of space.

(b) (5 points) Show the kd-tree that results after deleting the point (40, 60) from the original
tree. Indicate which node is the replacement node, and show both the tree structure
and the subdivision of space.

(Intermediate results are not required, but may be given to help assigning partial credit.)

Problem 2. (5 points) Suppose that we are given a set P = {p1, . . . , pn} of n points in R2 stored in
a kd-tree. Recall that the cell of a node in the tree is the rectangular region of space associated
with this node. Each null pointer of the tree is associated with a cell that contains no point
of P , which we call a null-pointer cell. (In Fig. 2, the null pointers are shown as small
squares.)

We assume that the kd-tree satisfies the standard assumptions: (1) The cutting dimensions
alternate between x and y with each level of the tree, (2) subtrees are balanced in the sense
that if the subtree rooted at a node p contains m points, then its two subtrees each contain
roughly m/2 points. The following lemma follows from the analysis of orthogonal range
searching from class (Lecture 14).
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Figure 2: (a) A kd-tree and null-pointer cells and (b) illustration of Lemma B.

Lemma A: Given any kd-tree storing a set of n points in R2 that satisfies the standard
assumptions and given any axis parallel line ℓ, the number of null-pointer cells that
intersect ℓ is O(

√
n).

In this problem, we will generalize this result. Consider any axis-parallel rectangle R, and let
k denote the number of points of P that lie within R. Prove the following result.

Lemma B: Given any kd-tree storing a set of n points in R2 that satisfies the standard
assumptions and given any axis parallel rectangle R that contains k points of the set,
the number of null-pointer cells that intersect R is O(k +

√
n).

Note that if a cell is completely contained within R, we consider to intersect R. For example,
in Fig. 2(b), rectangle R contains 8 points of P (circled in red) and it intersects 21 null-pointer
cells (shaded in pink).

Hint: There is no need to resort to solving recurrences. Classify the null-pointer nodes into
two groups, those that are completely contained within R and those that partially overlap R.

Problem 3. (10 points) As in the previous problem, suppose that we are given a set P =
{p1, . . . , pn} of n points in 2D space stored in a point kd-tree (see Fig. 3(a)), which satisfies
the standard assumptions. Each node stores a point p.point, a cutting dimension p.cutDim,
and left and right child pointers p.left and p.right, respectively. You may make use of any
primitive operations on points and rectangles. You may assume that there are no duplicate
coordinate values among the points of P or the query point.

In a segment sliding, you are given a vertical line segment s, and the query returns the first
point p ∈ P that is hit if we were to slide the segment to its left (see Fig. 3(b)). If a point pi
lies on the segment, then the answer is pi. If there is no point of P to the left of the segment,
the query returns null. Since there are no duplicate x-coordinates, so the answer is always
unique.

To simplify argument lists, let’s assume that we have access to a class VertSeg that stores a
vertical segment. Given an object seg is of this type, seg.x is its x-coordinate, seg.ylo is
its lower y-coordinate, and seg.yhi is its upper y-coordinate.
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Figure 3: Vertical segment sliding queries.

(a) (7 points) Present pseudo-code for an efficient algorithm, Point slideLeft(VertSeg

seg) for answering this query given the kd-tree. (Hint: As usual, create a recursive
helper function and explain how it is initially invoked. This is similar to nearest-neighbor
searching in the sense that you will keep track of each node’s cell and the best point
seen so far in the search. For efficiency, you should avoid visiting nodes that cannot
possibly contain the answer to the query.

(b) (3 points) Prove that your algorithm runs in O(
√
n) time. (Hint: Lemma B above is

helpful here. It only bounds the number of null-pointer nodes, but you may assume that
the bound applies to all the nodes that overlap the rectangle R. What is R in this case?)

Problem 4. (10 points) In this problem we will consider how to design a data structure for a
particular application. You are given a set P = {p1, . . . , pn} of n points in R2. Each point
represents the coordinates (e.g., longitude and latitude) of a gas station (or if you prefer,
a charging station for your EV). In addition to its coordinates, each point pi = (xi, yi), is
associated with a cost, denoted ci (see Fig. 4(a)). Think of this as the cost of refueling or
recharging. These points and the costs are fixed, and you may build a data structure for
answering the following queries.
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Figure 4: Cheapest fuel.

A query asks what is the lowest cost station in a given rectangular area (say, the map display
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on the car’s navigation system). Your app knows the user’s location, call it q = (xq, yq), and
there is a rectangle R(q, w, h), called the query rectangle of width w and height h centered
about q (see Fig. 1). Your query is given q, w, and h, and the answer to the query is the
identity of the station in P that lies within R(q, w, h) (see Fig. 4(b)). For simplicity, you may
assume that the costs are all distinct, so the answer is always unique.

Present an efficient data structure and algorithm for answering these queries. Our objective is
a query time of O(loga n) using space O(n logb n), where a, b > 0 are small constants. (Hint:
Explain how to modify range trees. Note that you cannot use a kd-tree, since that would
have a query time of at least O(

√
n). Also note that you do not have time to list all the

points inside the query rectangle, since that number could be as high as n.)

(a) (5 points) Describe your data structure, and derive its space bound. (Hint: Use a
variant of 2-D range trees. What cost-related information is stored in each node of the
tree?)

(b) (5 points) Explain how queries are answered, and derive the query time. (Note: Pseu-
docode is not required. A high-level English description is fine.)

Problem 5. (15 points) In this problem, you will show the result of inserting a sequence of three
keys into a hash table, using linear and quadratic probing and double hashing. In each case,
indicate the following:

� Was the insertion successful? (The insertion fails if the probe sequence loops infinitely
without finding an empty slot.)

� If the insertion is successful, indicate the number of probes, that is, the number of array
elements accessed. (The final location you place the key counts as a probe, so the number
of probes is one more than the number of collisions encountered.)

� Show contents of the hash table after each insertion. (You will show three tables for
each part.)

For the purposes of assigning partial credit, you can illustrate the probes made as we did in
the lecture notes (with little arrows).

(a) (5 points) Show the results of inserting the keys “X” then “Y” then “Z” into the hash
table shown in Fig. 5(a), assuming linear probing. (Insert the keys in sequence, so if all
are successful, the final table will contain all three keys.)

insert("Z") h("Z") = 0

insert("Y") h("Y") = 6

insert("X") h("X") = 4

(a) Linear probing

insert("Z") h("Z") = 8

insert("Y") h("Y") = 3

insert("X") h("X") = 6

(b) Quadratic probing

G

0 1 2 3 4 5 6 7 8 90 1 2 3 8 94 5 6 7

A D C BEF AB CD E D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GA

insert("Z") h("Z") = 4; g("Z") = 4

insert("Y") h("Y") = 5; g("Y") = 3

insert("X") h("X") = 14; g("X") = 6

(c) Double hashing
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Figure 5: Hashing with linear probing, quadratic probing, and double hashing.
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(b) (5 points) Repeat (a) using the hash table shown in Fig. 5(b) assuming quadratic probing.
(Hint: You may wish to use the fact that for any integer i ≥ 0, the value of i2 mod 10,
is one of {0, 1, 4, 5, 6, 9}.)

(c) (5 points) Repeat (a) using the hash table shown in Fig. 5(c) assuming double hashing,
where the second hash function g is shown in the figure.

Challenge Problem: In Problem 2 above we analyze the number of null-pointer cells that inter-
sect any axis-parallel line in a kd-tree in R2 with n points. In this problem, let’s consider
two natural generalizations to R3. Again, we have n points, and let us make the standard
assumptions that the cutting dimensions cycle among x, y, and z, and subtree sizes are
balanced.

(a) A plane is axis-orthogonal if it is orthogonal to one of the three coordinate axes. For
example, the set {(x, y, z) | y = 13.4} is a plane orthogonal to the y-axis that cuts the
y-axis at 13.4.

Show that the number of null-pointer cells in a stanard-assumption kd-tree that intersect
any axis-orthogonal plane is O(nc) for some constant 0 < c < 1. Derive the value of c.

Hint: Derive a simple recurrence and apply the Master Theorem to solve it.

(b) An (infinite) line is axis-parallel if it is parallel to one of the three coordinate axes. For
example, the set {(x, y, z) | x = 4, z = 7} is a line parallel to the y-axis that pierces the
(x, z)-coordinate plane at the point (4, 0, 7).

Repeat part (a) for any axis-parallel line.
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