
CMSC 420: Fall 2022

Practice Problems for Midterm 1

The exam will be held on Thu, Oct 20 in class. It is closed-book, closed-notes, but you will
be allowed one sheet of notes, front and back.

Disclaimer: These problems have been taken from old homeworks and exams. They do not
reflect the actual coverage, difficulty, or length of the exam. Note particularly that Union-Find and
leftist heaps were new this semester, and so are not well represented in these problems.

Problem 0. Expect at least one question of the form “apply operation X to data structure Y ,”
where X is a data structure that has been presented in lecture. (Likely targets: Union-Find,
leftist heaps, AVL trees, 2-3 trees, AA trees, treaps, skiplists, and splay trees).

Hint: Intermediate results can be included for partial credit, but don’t waste too much time
showing intermediate results, since they can steal time from later problems.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given to help with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) You have a standard (unbalanced) binary search tree storing the consecutive odd keys
{1, 3, 5, 7, 9, 11, 13} (which may have been inserted in any order). Into this tree you insert
the consecutive keys {0, 2, 4, 6, 8, 10, 12, 14} (also inserted in any order). Which of the
following statements hold for the resulting tree. (Select all that apply.)

(i) It is definitely a full binary tree

(ii) It is definitely a complete binary tree

(iii) Its height is larger than the original by exactly 1

(iv) Its height is larger than the original, but the amount of increase need not be 1

(c) You have a binary tree with inorder threads (for both inorder predecessor and inorder
successor). Let u and v be two arbitrary nodes in this tree. True or false: There is a
path from u to v, using some combination of child links and threads. (No justification
needed.)

(d) You are given a binary heap containing n elements, which is stored in an array as
A[1...n]. Given the index i of an element in this heap, present a formula that returns
the index of its sibling. (Hint: You can either do this by manipulating the bits in the
binary representation of i or by using a conditional (if-then-else).)

(e) In a leftist heap containing n ≥ 1 elements, what is the minimum possible NPL value of
the root? What is the maximum? (It is okay to be off by an additive error of ±O(1).)

(f) What are the minimum and maximum number of levels in a 2-3 tree with n nodes.
(Define the number of levels to be the height of the tree plus one.) Hint: It may help to
recall the formula for the geometric series:

∑m−1
i=0 ci = (cm − 1)/(c− 1).
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(g) You are given a 2-3 tree of height h, which has been converted into an AA-tree. As
a function of h, what is the minimum number of red nodes that might appear on any
path from a root to a leaf node in the AA tree? What is the maximum number? Briefly
explain.

(h) Unbalanced search trees, treaps and skiplists all support dictionary operations inO(log n)
“expected time.” What difference is there (if any) in the meaning of “expected time” in
these contexts?

(i) You are given a sorted set of n keys x1 < x2 < · · · < xn (for some large number n).
You insert them all into an AA tree in some arbitrary order. No matter what insertion
order to choose, one of these keys cannot possibly be a red node. Which is it? (Briefly
explain)

(j) You are given a skip list storing n items. What is the expected number of nodes that are
at levels 3 and higher in the skip list? (Express your answer as a function of n. Assume
that level 0 is the lowest level, containing all n items. Also assume that the coin is fair,
return heads half the time and tails half the time.)

Problem 2. Suppose that we are given a set of n objects (initially each item in its own set)
and we perform a sequence of m unions and finds (using height balanced union and path
compression). Further suppose that all the unions occur before any of the finds. Prove that
after initialization, the resulting sequence will take O(m) time (rather than the O(mα(m,n))
time given by the worst-case analysis).

Problem 3. You are given a degenerate binary search tree with n nodes in a left chain as shown
on the left of Fig. 1, where n = 2k − 1 for some k ≥ 1.

(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (right side of Fig. 1).
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Figure 1: Rotating into balanced form.

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.

Problem 4. You are given a binary tree (not necessarily a search tree) where, in addition to
p.left and p.right, each node p has a parent link, p.parent. This points to p’s parent, and
is null if p is the root. Given such a tree, present pseudocode for a function that returns the
inorder successor of any node p. If p has no inorder successor, the function returns null.
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Node inorderSuccessor(Node p) {

// ... fill this in

}

Briefly explain how your function works. Your function should run in time proportional to
the height of the tree.

Problem 5. You are given a standard (unbalanced) binary search tree. Let root denote its root
node. Present pseudocode for a function atDepth(int d), which is given an integer d ≥ 0,
and outputs the keys for the nodes that are at depth d in the tree (see Fig. 2). The keys
should be output in increasing order of key value.

If there are no nodes at depth d, the function returns an empty list. The running time of
your algorithm should be proportional to the number of nodes at depths ≤ d. (For example,
in the case of atDepth(2), there are 7 nodes of equal or lesser depth.)
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Figure 2: Nodes at some depth.

Hint: Create a recursive helper function. Explain what the initial call is to this function.

Problem 6. Given any AVL tree T and an integer d ≥ 0, we say that T is full at depth d if it has
the maximum possible number of nodes (namely, 2d) at depth d.

Prove that for any h ≥ 0, an AVL tree of height h is full at all depths from 0 up to ⌊h/2⌋.
(For example, the AVL tree of Fig. 2 has height 4, and is full at levels 0, 1, and 2, but it is
not full at levels 3 and 4.)

Hint: Prove this by induction on the height of the tree.

Problem 7. Consider the following possible node structure for 2-3 trees, where in addition to the
keys and children, we add a link to the parent node. The root’s parent link is null.

class Node23 { // a node in a 2-3 tree

int nChildren // number of children (2 or 3)

Node23 child[3] // our children (2 or 3)

Key key[2] // our keys (1 or 2)

Node23 parent // our parent

}

Assuming this structure, answer each of the following questions:
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(a) Present pseudocode for a function Node23 rightSibling(Node23 p), which returns a
reference to the sibling to the immediate right of node p, if it exists. If p is the rightmost
child of its parent, or if p is the root, this function returns null. (For example, in Fig. 3,
the right sibling of the node containing “2” is the node containing “8:12”. Since the
node containing “8:12” is the rightmost node of its parent (“4”), it has no right sibling.)

Your function should run in O(1) time.
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Figure 3: Sibling and level successor in a 2-3 tree.

(b) For a node p in a 2-3 tree, its level successor is the node to its immediate right at the
same level. Give pseudocode for a function Node23 levelSuccessor(Node23 p), which
returns a reference to p’s level successor, if it exists. If p is the rightmost node on its
level (including the case where p is the root), this function returns null. (For example,
in Fig. 3, the level successor of the node containing “2” is the node containing “8:12”,
and the level successor of “8:12” is the node containing “19:21”.)

Your function should run in O(log n) time. If you like, you may use rightSibling.

(c) Suppose we start at any node p in a 2-3 tree with n nodes, and we repeatedly perform
p = levelSuccessor(p) until p == null. What is the (worst-case) total time needed
to perform all these operations? (Briefly justify your answer.)

Problem 8. Each node of a 2-3 tree may have either 2 or 3 children, and these nodes may appear
anywhere within the tree. Let’s imagine a much more rigid structure, where the node types
alternate between levels. The root is a 2-node, its two children are both 3-nodes, their children
are again 2-nodes, and so on (see Fig. 4). Generally, depth i of the tree consists entirely of
2-nodes when i is even and 3-nodes when i is odd. (Remember that the depth of a node is the
number of edges on the path to the root, so the root is at depth 0.) We call this an alternating
2-3 tree. While such a structure is too rigid to be useful as a practical data structure, its
properties are easy to analyze.

(a) For i ≥ 0, define n(i) to be the number of nodes at depth i in an alternating 2-3 tree.
Derive a closed-form mathematical formula (exact, not asymptotic) for n(i). Present
your formula and briefly explain how you derived it.

By “closed-form” we mean that your answer should just be an expression involving stan-
dard mathematical operations. It is not allowed to involve summations or recurrences,
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Figure 4: Alternating 2-3 tree.

but it is allowed to include cases, however, such as

n(i) =

{
. . . if i is even
. . . if i is odd.

(b) For i ≥ 0, define k(i) to be the number of keys stored in the nodes at depth i in an
alternating 2-3 tree. (Recall that each 2-node stores one key and each 3-node stores 2
key). Derive a closed-form mathematical formula for k(i). Present your formula and
briefly explain how you derived it. (The same rules apply for “closed form”, and further
your formula should stand on its own and not make reference to n(i) from part (a).)

Problem 9. In this problem, we will consider variations on the amortized analysis of the dynamic
stack. Let us assume that the array storage only expands, it never contracts. As usual, if
the current array is of size m and the stack has fewer than m elements, a push costs 1 unit.
When the mth element is pushed, an overflow occurs.

You are given two constants γ, δ > 1. When an overflow occurs, we allocate a new array of
size γm, copy the elements from the old array over to the new array. The total cost is 1 (for
the push) plus δm (for copying). Derive a tight bound on the amortized cost, which holds in
the limit as m → ∞. Express your answer as a function of γ and δ. Explain your answer.

Problem 10. Define a new treap operation, expose(Key x). It finds the key x in the tree (throw-
ing an exception if not found), sets its priority to−∞ (or more practically Integer.MIN VALUE),
and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

Problem 11. In this problem we will consider an enhanced version of a skip list. As usual, each
node p stores a key, p.key, and an array of next pointers, p.next[]. To this we add a
parallel array p.span[], which contains as many elements as p.next[]. This array is defined
as follows. If p.next[i] refers to a node q, then p.span[i] contains the distance (number
of nodes) from p to q (at level 0) of the skip list.

For example, see Fig. 5. Suppose that p is third node in the skip list (key value “10”), and
p.next[1] points to the fifth element of the list (key value “13”), then p.span[1] would be
5− 3 = 2, as indicated on the edge between these nodes.

Present pseudo-code for a function int countSmaller(Key x), which returns a count of the
number of nodes in the entire skip list whose key values are strictly smaller than x. For
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Figure 5: Skip list with span counts (labeled on each edge in blue).

example, in Fig. 5, the call countSmaller(22) would return 6, since there are six items that
are smaller than 22 (namely, 2, 8, 10, 11, 13, and 19).

Your procedure should run in time expected-case time O(log n) (over all random choices).
Briefly explain how your function works.

Problem 12. It is easy to see that, if you splay twice on the same key in a splay tree (splay(x);
splay(x)), the tree’s structure does not change as a result of the second call.

Is this true when we alternate between two keys? Let T0 be an arbitrary splay tree, and let
x and y be two keys that appear within T0. Let:

� T1 be the result of applying splay(x); splay(y) to T0.

� T2 be the result of applying splay(x); splay(y); splay(x); splay(y) to T0.

Question: Irrespective of the initial tree T0 and the choice of x and y, is T1 = T2? (That
is, are the two trees structurally identical?) Either state this as a theorem and prove it or
provide a counterexample, by giving the tree T0 and two keys x and y for which this fails.
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