
CMSC 420: Fall 2022

Practice Problems for Midterm 2

The exam will be held in class on Thu, Nov 17. It is close-book, closed-notes, but you will be
allowed two sheets of notes, front and back.

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not necessarily reflect the actual
coverage, difficulty, or length of the midterm exam.

Problem 0. Expect at least one problem that involves working through some operations on a data
structure that we have covered since the previous exam. (Good candidates are kd-trees and
hashing, but I may draw something from the material shortly before the midterm, such as
treaps, skiplists, or splay trees.)

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) We have studied many classes of binary trees this semester. For this problem, let us
ignore the keys and consider just the tree’s node structure. Given any binary tree T ,
define its reversal to be the tree that results by flipping the left and right children at
every node in the tree. A class of trees is said to be symmetrical if it is invariant under
reversals. That is, given any valid tree T in the class, its reversal is also a valid member
of the class. Which of the following classes of binary trees are symmetrical? (Select all
that apply.)

(1) Leftist heaps

(2) AVL trees

(3) Red-black trees

(4) AA trees

(5) Treaps

(6) Splay trees

(b) Suppose you know that a very small fraction of the keys in an ordered dictionary data
structure are to be accessed most of the time, but you do not know which these keys are.
Among the various data structures we have seen this semester, which would be best for
this situation? Explain briefly.

(c) What is the maximum number of points that can be stored in a 3-dimensional point
quadtree of height h? Express your answer as an exact (not asymptotic) function of h.
(Hint: It may be useful to recall the formula for any c > 1,

∑m
i=0 c

i = (cm+1)−1)/(c−1).)

(d) In high dimensional spaces (say, dimensions greater than 10), kd-trees are preferred over
quadtrees. Why is this?

(e) We have n uniformly distributed points in the unit square, with no duplicate x- or y-
coordinates. Suppose we insert these points into a kd-tree in random order. As in class,
we assume that the cutting dimension alternates between x and y. As a function of n
what is the expected height of the tree? (You may express your answer in asymptotic
form.)

1



(f) Same as the previous problem, but suppose that we insert points in ascending order of
x-coordinates, but the y-coordinates are random.

(g) You are using hashing with open addressing. Suppose that the table has just one empty
slot in it. In which of the following cases are you guaranteed to succeed in finding the
empty slot? (Select all that apply.)

(1) Linear probing (under any circumstances)

(2) Quadratic probing (under any circumstances)

(3) Quadratic probing, where the table size m is a prime number

(4) Double hashing (under any circumstances)

(5) Double hashing, where the table size m and hash function h(x) are relatively prime

(6) Double hashing, where the table size m and secondary hash function g(x) are rela-
tively prime (that is, they share no common factors)

Problem 2. Suppose that you are given a treap data structure storing n keys. The node structure
is shown in Fig. 1. You may assume that all keys and all priorities are distinct.

1
k

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

priority

key

class TreapNode {

Key key // key

int priority // priority

TreapNode left // left child

TreapNode right // right child

}

Figure 1: Treap node structure and an example.

(a) Present pseudocode for the operation int minPriority(Key x0, Key x1), which is
given two keys x0 and x1 (which may or may not be in the treap), and returns the
lowest priority among all nodes whose keys x lie in the range x0 ≤ x ≤ x1. If the treap
has no keys in this range, the function returns Integer.MAX VALUE. Briefly explain why
your function is correct.

For example, in Fig. 1 the query minPriority("c", "g") would return 2 from node
"e", since it is the lowest priority among all keys x where "c" ≤ x ≤ "g".

(b) Assuming that the treap stores n keys and has height O(log n), what is the expected-case
running time of your algorithm? (Briefly justify your answer.)

Problem 3. We usually like our trees to be balanced. Here we will consider unbalanced trees.
Given a node p, recall that size(p) is the number of nodes in p’s subtree. A binary tree is
left-heavy if for each node p, where size(p) ≥ 3, we have size(p.left)/size(p) ≥ 2/3 (see
the figure below). Let T be a left-heavy tree that contains n nodes.

(a) Consider any left-heavy tree T with n nodes, and let s be the leftmost node in the
tree. Prove that depth(s) ≥ log3/2 n. (If you are super careful in your proof, you may
discover this is not quite true. The actual bound is (log3/2 n)−c, for a constant c. Don’t
worry about this small correction term.)

2



T

s

t

Figure 2: A left-heavy tree.

(b) Consider any left-heavy tree T with n nodes, and let t be the rightmost node in the
tree. Prove that depth(t) ≤ log3 n.

Problem 4. In ordered dictionaries, a finger search is one where the search starts at some node
of the structure, rather than the root. This is useful when you believe that the next key you
are searching for is close to the last one you visited.

Let us suppose we have a skiplist, with the node structure as shown in Fig. 3. Suppose that
we have two keys, x < y, and we have already found the node p that contains the key x. In
order to find y, it would be wasteful to start the search at the head of the skip list. Instead,
we start at p. The operation forwardSearch(p, y) searches for key y starting at node p

(whose key is smaller than y). If y is found it returns the associated value, and otherwise it
returns null.

25

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5 9

9

5

3

5 4

4

3

1 1 1 1 1 1

1

1 1 1

2

forwardSearch(p, 19)
p

class SkipNode {

Key key

Value value

SkipNode[] next

}

Figure 3: The operation forwardSearch.

Of course, we could crawl along level 0, but this would be slow. Suppose that there are m
nodes between x and y in the skip list. We want the expected search time to be O(logm),
not O(log n).

Present pseudo-code for an algorithm for an efficient function. You do not need to analyze
the running time. (Hint: The height of any node p can be determined as the length of its
array of next pointers, that is, p.next.length.)

Problem 5. You are given a set P of n points in the real plane stored in a kd-tree, which satisfies
the standard assumptions. A partial-range max query is given two x-coordinates lo and hi,
and the problem is to find the point p ∈ P that lies in the vertical strip bounded by lo and
hi (that is, lo ≤ p.x ≤ hi) and has the maximum y-coordinate (see Fig. 4).

3



lo hi

Answer

x

y

Figure 4: Partial-range max query.

(a) Present pseudo-code for an efficient algorithm to solve partial-range max queries, as-
suming that the points are stored in a point kd-tree. To simplify notation, let’s assume
we have an vertical strip object, Strip, where strip.lo and strip.hi are the strip
bounds. You may make use of any primitive operations on points and rectangles (but
please explain them). Hint: A possible signature for your helper function might be:

Point partialMax(Strip s, KDNode p, Rectangle cell, Point best)

(b) Show that your algorithm runs in time O(
√
n).

Problem 6. In this problem we will see how to use kd-trees to answer a common geometric query,
called ray shooting. You are given a collection of vertical line segments in 2D space, each
starts at the x-axis and goes up to a point in the positive quadrant. Let P = {p1, . . . , pn}
denote the upper endpoints of these segments (see Fig. 5). You may assume that both the x-
and y-coordinates of all the points of P are strictly positive real numbers.

x

y

p8

p1

p2

p3
p4

p5

p6

p7

p9

p10

rayShoot(q) = p8

x

y

q

p8

q′

rayShoot(q′) = null
p1

p2

p3
p4

p5

p6

p7

p9

p10

Figure 5: Ray shooting in a kd-tree.

Given a point q, we shoot a horizontal ray emanating from q to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure
above, the ray shot from q hits the segment with upper endpoint p8. The ray shot from q′

hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P . A query is given the point q = (qx, qy), and it returns the upper endpoint
pi ∈ P of the segment the ray first hits, or null if the ray misses all the segments.

4



Suppose you are given a kd-tree of height O(log n) storing the points of P . (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot(q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please
explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Hint: You might wonder how to store segments in a kd-tree. It turns out that to answer this
query you do not need to store segments, just points. The function rayShoot(q) will invoke
a recursive helper function. Here is a suggested form, which you are not required to use:

Point rayShoot(Point2D q, KDNode p, Rectangle cell, Point best),

Be sure to indicate how rayShoot(q) makes its initial call to the helper function.

Problem 7. In class we showed that for a balanced kd-tree with n points in the real plane (that
is, in 2-dimensional space), any axis-parallel line intersects at most O(

√
n) cells of the tree.

Show that for every n, there exists a set of points P in the real plane, a kd-tree of height
O(log n) storing the points of P , and a line ℓ, such that every cell of the kd-tree intersects
this line.

Problem 8. In this problem, we will consider how to use/modify range trees to answer two queries
efficiently. Throughout, P = {p1, . . . , pn} is a set of n points in R2 (Fig. 6(a)). Your answer
should be based on range trees, you may make modifications to P including possibly trans-
forming the points and adding additional coordinates.

In each case, the various layers of your search structure (what points are stored there and how
they are sorted) and explain how your search algorithm operates. An English explanation
(as opposed to pseudocode) is sufficient. Justify your algorithm’s correctness and derive its
running time.

(a) Assume that all the points of P have positive x- and y-coordinates. In a platform-
dropping query, we are given a point q = (qx, qy) with positive coordinates. This defines
a horizontal segment running from the y-axis to q. The objective is to report the first
point p ∈ P that would be hit if we drop the platform (see Fig. 6(b)). Formally, this
point has the maximum y-coordinate such that px ≤ qx and py ≤ qy. If no point of P is
hit by the platform, the query returns null.

Hint: Your data structure should use O(n log n) storage and answer queries in O(log2 n)
time.

(b) In a max empty-triangle query you are given a point q = (qx, qy). The objective is to
compute the largest axis-parallel 45-45 right triangle that extends to the upper-right of
q and contains no point of P in its interior. The answer to the query is the point of P
that lies on the triangle’s hypotenuse (see Fig. 6(c)). (Alternatively, you can think of
this as sliding the 45◦ hypotenuse until it first hits a point of P ). If the triangle can be
grown to infinite size, return null.

5



x

y

p8
p1

p2

p3

p6

p7

p9

(a) (c)

p4

p5

x

y

p8
p1

p2

p3

p6

p7

p9
p4

p5

(b)

q

x

y

p8
p1

p2

p3

p6

p7

p9
p4

p5
q

Figure 6: Platform-dropping and max empty-triangle queries.

Hint: Your data structure should useO(n log2 n) storage and answer queries inO(log3 n)
time.

Problem 9. You are designing an expandable hash table using open addressing. Let m denote
the current table size. Initially m = 4. Let us make the ideal assumption that each hash
operation takes exactly 1 time unit. After each insertion, if the number of entries in the table
is greater than or equal to 3m/4, we expand the table as follows. We allocate a new table
of size 4m, create a new hash function, and rehash all of the elements from the current table
into the new table. The time to do this expansion is 3m/4.

(a) Derive the amortized time to perform an insertion in this hash table (assuming that m
is very large). State your amortized running time and explain how you derived it. (For
fullest credit, your running time should as tight as possible.)

Hint: The amortized time need not be an integer.

(b) One approach to decrease the amortized time is to modify the table expansion factor,
which in this case is 4. In order to reduce the amortized time, should we increase or
decrease this factor? If you make this adjustment, what negative side effect (if any)
might you observe regarding the space and time performance of the data structure?
Explain briefly. (Don’t give a formal analysis)

6


