
CMSC 420: Fall 2022

Practice Problems for the Final Exam

Our final exam will be held on Thu, Dec 15, 8-10am in IRB 0324, the Antonov Auditorium.
It will be closed-book, closed-notes, but you will be allowed three sheets of notes, front and back.

Disclaimer: The exam will be comprehensive, emphasizing material in the latter half of the
semester. These practice problems have been extracted from old homework assignments and exams.
Material changes from semester to semester. These do not necessarily reflect the actual coverage,
difficulty, or length of the midterm exam.

Problem 0. Since the exam is comprehensive, please look back over the previous homework as-
signments, the two midterm exams, and the practice problems for both midterms. You should
expect at least one problem that involves tracing through an algorithm or construction given
in class.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) Let T be extended binary search tree (that is, one having internal and external nodes).
You visit the nodes of T according to one of the standard traversals (preorder, postorder,
or inorder). Which of the following statements is necessarily true? (Select all that apply.)

(i) In a postorder traversal, all the external nodes appear in the order before any of the
internal nodes

(ii) In a preorder traversal, all the internal nodes appear in the order before any of the
external nodes

(iii) In an inorder traversal, internal and external node alternate with each other

(iv) None of the above is true

(b) When we delete an entry from a simple (unbalanced) binary search tree, we sometimes
need to find a replacement key. Suppose that p is the node containing the deleted key.
Which of the following statements are true? (Select all that apply.)

(i) A replacement is needed whenever p is the root

(ii) A replacement is needed whenever p is a leaf

(iii) A replacement is needed whenever p has two non-null children

(iv) It is best to take the replacement exclusively from p’s right subtree

(v) At most one replacement is needed for each deletion operation

(c) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(d) Repeat (c) in the case of deletion. (Give your answer as an asymptotic function of n.)

(e) The AA-tree data structure has the following constraint: “Each red node can arise only
as the right child of a black node.” Which of the two restructuring operations (skew and
split) enforces this condition?

1



(f) Splay trees are known to support efficient finger search queries. What is a “finger search
query”?

(g) In class, we mentioned that when using double hashing, it is important that the second
hash function g(x) should not share any common divisors with the table size m. What
might go wrong if this were not the case?

(h) Hashing is widely regarded as the fastest of all data structures for basic dictionary
operations (insert, delete, find). Give an example of an operation that a tree-based
search structure can perform more efficiently than a hashing-based data structure, and
explain briefly.

(i) In the (unstructured) memory management system discussed in class, each available
block of memory stored the size of the block both at the beginning of the block (which
we called size) and at the end of the block (which we called size2). Why did we store
the block size at both ends?

(j) Between the classical dynamic storage allocation algorithm (with arbitrary-sized blocks)
or the buddy system (with blocks of size power of 2) which is more susceptible to internal
fragmentation? Explain briefly.

Problem 2. This problem involves an input which is a binary search tree having n nodes of height
O(log n). You may assume that each node p has a field p.size that stores the number of
nodes in its subtree (including p itself). Here is the node structure:

class Node {

int key // key

Node left, right // children

int size // number of entries in this subtree

}

(a) Present pseudocode for a function printMaxK(int k), which is given 0 ≤ k ≤ n, and
prints the values of the k largest keys in the binary search tree (see, for example, Fig. 1).

8

5

11

6

4

14

7

3

1

10

15

25

26

21

19

18 printMaxK(8) = 〈11, 14, 15, 18, 19, 21, 25, 26〉

printMaxK(2) = 〈25, 26〉

printOdd() = 〈1, 4, 6, 8, 11, 15, 19, 25〉

16

5

3

11

4

10

5

4

1 1

2

4

1

1

p.key
p.size

3

Figure 1: The functions printMaxK and printOdd.

You should do this in a single pass by traversing the relevant portion of the tree. It
would be considered cheating to store all the elements of in a list, and then just print
the last k entries of the list.

2



For fullest credit, the keys should be printed in ascending order, and your algorithm
should run in time O(k + log n) (see part (b) below). Briefly explain your algorithm.

Hint: I would suggest using the helper function printMaxK(Node p, int k)), where
k is the number of keys to print from the subtree rooted at p.

(b) Derive the running time of your algorithm in (a).

(c) Give pseudocode for a function printOdd(), which does the following. Let ⟨x1, x2, . . . , xn⟩
denote the keys of the tree in ascending order, this function prints every other key, namely
⟨x1, x3, x5, . . .⟩ (see Fig. 1).

Again, you should do this in a single pass by traversing the tree. (For example, it would
be considered cheating to traverse the tree and construct a list with all the entries, and
then only print the odd entries of your list.) Your function should run in time O(n).
Briefly explain your algorithm.

Problem 3. Throughout this problem, assume that you are given a kd-tree storing a set P of
n points in R2. Assume the tree satisfies the standard assumptions. (That is, the cutting
dimension alternates between x and y, subtrees are balanced, and the tree stores a bounding
box bbox containing all the points of P .) You may also assume that that any geometric com-
putations on primitive objects (distances, disjointness, containment, etc.) can be computed
in constant time, without explanation.

3.6

5

7

4

−2

2.5
3

9

−1
5

Ans = 4 + 7 + 5− 2 = 14

R

Figure 2: Weighted range query.

(a) In a standard range-counting query, we want to count the number of points in the range.
Suppose that each point pi ∈ P has an associated real-valued weight wi. In a weighted
orthogonal range query, we are given a query rectangle R, given by its lower-left corner
rlo and upper-right corner rhi, and the answer is the sum of the weights of the points
that lie within R (see Fig. 2(b)). If there are no points in the range, the answer is 0.

Explain how to modify the kd-tree (by adding additional fields to the nodes, if you
like) so that weighted orthogonal range queries can be answered efficiently. Based on
your modified data structure, present an efficient algorithm in pseudo-code for answering
these queries and explain. (For full credit, your algorithm should run in O(

√
n) time).

You may handle the edge cases (e.g., points lying on the boundary of R) however you
like. Hint: You may use whatever helper function(s) you like, but I would suggest using:

double weightedRange(Rectangle R, KDNode p, Rectangle cell)

where p is the current node in the kd-tree, cell is the associated cell.

3



(b) Briefly analyze the running time of your algorithm, assuming that the tree is balanced.
(You may apply/modify results proved in class.)

Problem 4. As in the previous problem, assume that you are given a kd-tree storing a set P of
n points in R2 that satisfies the standard assumptions. In a fixed-radius nearest neighbor
query, we are given a point q ∈ Rd and a radius r > 0. Consider a circular disk centered at
q whose radius is r. If no points of P lie within this disk, the answer to the query is null.
Otherwise, it returns the point of P within the disk that is closest to q (see Fig. 3). Present
(in pseudo-code) an efficient kd-tree algorithm that answers such a query.

q

r

p4

p2

p3

p1

p9

p6p7

p8

Answer: p3

p5

p4

p2

p3

p1

p9

p6p7

p8

q
r

Answer: null

p5

Figure 3: Faxed-radius nearest-neighbor query.

Hint: You may use whatever helper function(s) you like, but I would suggest using:

Point frnn(Point q, double r, KDNode p, Rectangle cell, Point best)

where p is the current node in the kd-tree, cell is the associated cell, and best is the best
point seen so far.

You do not need to analyze your algorithm’s running time, but explain it briefly. Your
algorithm should not waste time visiting nodes that cannot possibly contribute to the answer.

Problem 5. In this problem we will build a suffix tree for the string S = baabaabababaa$.

(a) List the substring identifiers for the 14 suffixes of S. For the sake of uniformity, list them
in order (either back to front or front to back). For example, you could start with “$”
and end with the substring identifier for the entire string.

(b) List the substring identifiers again together with their indices (0 through 13), but this
time in alphabetical order (where "a" < "b" < "$").

(c) Draw a picture of the suffix tree for S. For the sake of uniformity, when drawing your
tree, use the convention of Fig. 7 in the Lecture 17 LaTeX lecture notes. In particular,
label edges of the final tree with substrings, index the suffixes from 0 to 13, and order
subtrees in ascending lexicographical order.

Problem 6. In this problem, we will consider how to use/modify range trees to answer two related
queries. While the answer should be based on range trees, you may need to make modifications
including possibly transforming the points and even adding additional coordinates. In each
case, describe the points that are stored in the range tree and how the search process works.
An English explanation (as opposed to pseudocode) is sufficient. Justify your algorithm’s
correctness and derive its running time.

4



(a) Assume you are given an n-element point set P in R2 (see Fig. 4(a)). In addition to
its coordinates (px, py), each point p ∈ P is associated with a numeric rating, pz. In an
orthogonal top-k query, you are given an axis-aligned query rectangle R (given, say, by
its lower-left and upper-right corners) and a positive integer k. The query returns a list
of the (up to) k points of P that lie within R having the highest ratings (see Fig. 4(b)).
(As an application, imagine you are searching for the k highest rated restaurants in a
rectangular region of some city.)

(a) (b) (c)

OrthTopK(3) = {8, 9, 12}
13

5

8 5

1 12

2
9

8

R

4 1

2213

5

8 5

1 12

2
9

8
4 1

22

x

y

pz

13

5
5 510 3

29 2
4 1

22

q r1r2

AnnTopK(3) = {3, 5, 9}

Figure 4: Orthogonal top-k queries and annulus top-k queries.

Describe how to preprocess the point set P into a data structure that can efficiently
answer any orthogonal top-k query (R, k). Your data structure should use O(n log2 n)
storage and answer queries in at most O(k log2 n) time. (I don’t care how you handle
edge cases, such as points lying on the boundary of the rectangle or points having the
same rating.) If there are k points or fewer in the query region, the list will contain
them all.

(b) In an annulus top-k query a query is given by a query point q ∈ R2 and two positive
radii r1 < r2. Let S1 = S(q, r1) be the square centered at q whose half side length is r1
and define S2 similarly for q and r2. The square annulus A(q, r1, r2) is defined to be the
region between these two squares. The query returns a list of the (up to) k points of P
that lie within the annulus A(q, r1, r2) that have the highest ratings (see Fig. 4(c)).

Problem 7. In this problem, we are given a set L of n horizontal line segments siti in the plane,
where si = (x−i , yi) and ti = (x+i , yi) (Fig. 5(a–b)). We want to preprocess them to answer
the following queries efficiently:

Segment stabbing queries: Consider a vertical query line segment with x-coordinate qx,
whose lower endpoint has the y-coordinate q−y , and whose upper endpoint has y-coordinate
q+y . How many of the segments of L does this segment intersect? (For example, the ver-
tical segment in Fig. 5(c) intersects 5 segments of L.)

Answer the following for the query vertical query (qx, q
−
y , q

+
y ) and horizontal segment siti.

(Hint: To simplify your answer, you may assume that all the coordinates are distinct, so the
endpoint of one segment will never lie in the interior of another.)

(a) Describe a range tree-based data structure for this problem and derive its space bound.
(Query processing comes later.)

5



x

y

x

y

Answer: 5

qx

q−y

q+y

si ti

(b) (c)

x

y

si ti

(a)
x+ix−i

yi

Figure 5: Segment stabbing queries.

(b) Explain how segment-stabbing queries are answered and derive the query time.

Problem 8. Suppose you have a large span of memory, which starts at some address start and
ends at address end-1 (see Fig. 6). (The variables start and end are generic pointers of type
void*.) As the dynamic memory allocation method of Lecture 15, this span is subdivided
into blocks. The block starting at address p is associated with the following information:

� p.inUse is 1 if this block is in-use (allocated) and 0 otherwise (available)

� p.prevInUse is 1 if the block immediately preceeding this block in memory is in-use.
(It should be 1 for the first block.)

� p.size is the number of words in this block (including all header fields)

� p.size2 each available block has a copy of the size stored in its last word, which is
located at address p + p.size - 1.

(For this problem, we will ignore the available-list pointers p.prev and p.next.)

0
1

5
0

5
0

0
1

2
0

0
1

8
0

8
0

1
3
0

0
1

5
0

5
0

0
1

1
8
0

1
8
0

Initial:

50 20 80 5030

180

start end

0
1

2
0

1

20

1
1

2
0

20

1
1

2
0

20

1
3
0

30

1

return

compact(start, end)

Figure 6: Memory compactor.

In class, we said that in real memory-allocation systems, blocks cannot be moved, because they
may contain pointers. Suppose, however, that the blocks are movable. Present pseudo-code
for a function that compacts memory by copying all the allocated blocks to a single contiguous
span of blocks at the start of the memory span (see Fig. 6). Your function compress(void*

6



start, void* end) should return a pointer to the head of the available block at the end.
Following these blocks is a single available block that covers the rest of the memory’s span.

To help copy blocks of memory around, you may assume that you have access to a function
void* memcpy(void* dest, void* source, int num), which copies num words of memory
from the address source to the address dest.

Problem 9. Recall the buddy system of allocating blocks of memory (see Fig. 7). Throughout
this problem you may use the following standard bit-wise operators:

& bit-wise “and” | bit-wise “or”
^ bit-wise “exclusive-or” ~ bit-wise “complement”
<< left shift (filling with zeros) >> right shift (filling with zeros)

You may also assume that you have access to a function bitMask(k), which returns a binary
number whose k lowest-order bits are all 1’s. For example bitMask(3) = 1112 = 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

Level

0 2 4 6 8 10 12 14

0 4 8 12

0 8

0

Figure 7: Buddy relatives.

Present a short (one-line) expression for each of the following functions in terms of the above
bit-wise functions:

(a) boolean isValid(int k, int x): True if and only if x ≥ 0 a valid starting address
for a buddy block at level k ≥ 0.

(b) int sibling(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its sibling (that is, its “buddy”).

(c) int parent(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its parent at level k + 1.

(d) int left(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its left child at level k − 1.

(e) int right(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its right child at level k − 1.

For example, given the tree shown in the figure, we have

7



isValid(2, 12) = isValid(2, 01100) = True

isValid(2, 10) = isValid(2, 01010) = False

sibling(2, 12) = sibling(2, 01100) = 8 = 01000

parent(2, 12) = parent(2, 01100) = 8 = 01000

left(2, 12) = left(2, 01100) = 12 = 01100

right(2, 12) = right(2, 01100) = 14 = 01110

Problem 10. This problem involves a data structure called an erasable stack. This data structure
is just a stack with an additional operation that allows us to “erase” any element that is
currently in the stack. Whenever we pop the stack, we skip over the erased elements, re-
turning the topmost “unerased” element. The pseudocode below provides more details be
implemented.

class EStack { // erasable stack of Objects

int top // index of stack top

Object A[HUGE] // array is so big, we will never overflow

Object ERASED // special object which indicates an element is erased

EStack() { top = -1 } // initialize

void push(Object x) { // push

A[++top] = x

}

void erase(int i) { // erase (assume 0 <= i <= top)

A[i] = ERASED

}

Object pop() { // pop (skipping erased items)

while (top >= 0 && A[top] == ERASED) top--

if (top >= 0) return A[top--]

else return null

}

}

Let n = top + 1 denote the current number of entries in the stack (including the ERASED

entries). Define the actual cost of operations as follows: push and erase both run in 1 unit
of time and pop takes k + 1 units of time where k is the number of ERASED elements that
were skipped over.

(a) As a function of n, what is the worst-case running time of the pop operation? (For
fullest credit, make your bound as tight as possible.) Justify your answer.

(b) Starting with an empty stack, we perform a sequence of m push, erase, and pop oper-
ations. Give an upper bound on the amortized running time of such as sequence. You
may assume that all the operations are valid and the array never overflows. (For fullest
credit, make your bound as tight as possible.) Justify your answer.

(c) Given two (large) integers k and m, where k ≤ m/2, we start from an empty stack,
push m elements, and then erase k elements at random, finally we perform a single pop

8



operation. What is the expected running time of the final pop operation. You may
express your answer asymptotically as a function of k and m.

In each case, state your answer first, and then provide your justification.

Problem 11. You are designing an expandable hash table using open addressing. Let m denote
the current table size. Initially m = 4. Let us make the ideal assumption that each hash
operation takes exactly 1 time unit. After each insertion, if the number of entries in the table
is greater than or equal to 3m/4, we expand the table as follows. We allocate a new table
of size 4m, create a new hash function, and rehash all of the elements from the current table
into the new table. The time to do this expansion is 3m/4.

(a) Derive the amortized time to perform an insertion in this hash table (assuming that m
is very large). State your amortized running time and explain how you derived it. (For
fullest credit, your running time should as tight as possible.)

Hint: The amortized time need not be an integer.

(b) One approach to decrease the amortized time is to modify the table expansion factor,
which in this case is 4. In order to reduce the amortized time, should we increase or
decrease this factor? If you make this adjustment, what negative side effect (if any)
might you observe regarding the space and time performance of the data structure?
Explain briefly.

‘

9


