
CMSC 420: Fall 2022

Programming Assignment 1: Leftist Heaps

Handed out: Tue, Sep 27. Due: Tue, Oct 11, 11:59pm.

Overview: In this programming assignment you will implement a leftist heap, the mergeable heap
structure presented in Lecture 5. Your implementation will support all the basic functions
of a mergeable priority queue, namely insert, extract-min, and merge. There will also
be a couple of additional operations including an operation to list the contents of your tree
structure so we can check its correctness.

Operations: You will implement the following public functions. Subject to the efficiency require-
ments described below, you are free to create whatever additional private/protected data and
utility functions as you like.

public LeftistHeap(): This constructs an empty leftist heap. This creates an empty tree
by initializing the root to null (and any other initializations as needed by your particular
implementation).

boolean isEmpty(): Returns true if the current heap has no entries and false otherwise.

void clear(): This resets the structure to its initial state, removing all its existing contents.

void insert(Key x, Value v): This inserts the key-value pair (x, v), where x is the key
and v is the value. (Hint: This can be done with a single call to the utility function
merge, without the need of loops or recursion.)

void mergeWith(LeftistHeap<Key, Value> h2): This merges the current heap with the
heap h2. If h2 is null or it references this same heap (that is, this == h2) then this
operation has no effect. Otherwise, the two heaps are merged, with the current heap
holding the union of both heaps, and h2 becoming an empty heap.

For testing purposes, you should implement merge operation so it produces exactly the
same tree as in the lecture notes.

Key getMinKey(): This returns the smallest key in the heap, but makes no changes to the
heap’s contents or structure. If the heap is empty, it returns null.

Value extractMin(): If the heap is empty, this throws an Exception with the error message
"Empty heap" Otherwise, this locates the entry with the minimum key value, deletes it
from the heap, and returns its associated value. (Hint: This can be done with a single
call to the utility function merge, without the need of loops or recursion.)

ArrayList<String> list(): This operation lists the contents of your tree in the form of a
Java ArrayList of strings. The precise format is important, since we check for correct-
ness by “diff-ing” your strings against ours.

Starting at the root node, visit all the nodes of this tree based on a right-to-left
preorder traversal. In particular, when visiting a node reference u, we do the following:

Null: (u = null) Add the string "[]" to the end of the array-list and return.

1

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/Lects/lect05-heaps.pdf

1

IAD
26

0

LAX
42 0

DCA
67

0

JFK
94

0

BWI
88

Figure 1: A leftist heap.

Non-null: (u ̸= null) Add the string "(" + u.key + ", " + u.value + ") [" +

u.npl + "]" with the node’s key, value, and npl value to the end of the array-
list. (The symbol “ ” is a space.) Then recursively visit u.right and then u.left.

An example of the output on the tree shown in Fig. 1 is shown below.

Index Array-List Contents
0: (26, IAD) [1]

1: (67, DCA) [0]

2: []

3: (94, JFK) [0]

4: []

5: []

6: (42, LAX) [0]

7: []

8: (88, BWI) [0]

9: []

10: []

This format has been chosen for a particular reason. It is very easy to produce a nicely
formatted output based on this. Given the above output, our program will generate the
following structured output. If you rotate it 90◦ clockwise, it looks quite similar to the
tree structure of Fig. 1.

Formatted structure:

| (67, DCA) [0]

| | (94, JFK) [0]

(26, IAD) [1]

| (42, LAX) [0]

| | (88, BWI) [0]

Split: The operations described above follow directly from the code given in class. We would like
you to implement one more operation. This is more challenging. It is worth 10 points. So, if
you do not implement it correctly, you will still get most of the credit for the assignment.

LeftistHeap<Key, Value> split(Key x): Given a key x, this splits the heap into two,
the current one contains all the entries whose keys are less than or equal to x and all
the entries whose keys are strictly greater than x are moved into a new heap, which is
returned.

2

For the sake of efficiency (and so we can test your output), the process should be im-
plemented as follows. First, we create an empty list (e.g., a Java ArrayList) of nodes.
Next, perform a left-to-right preorder traversal of the current tree. When we visit a
node u, if u.key ≤ x, then leave the node unchanged and apply the traversal recursively,
first to the left subtree and then to the right subtree. On the other hand, if u.key > x,
unlink this node from the current tree and append it to the end of the list. By heap
ordering, we know that all the nodes of this subtree will be placed in the new heap.

SFO
119

DCA
167

ATL
148

IAD
142

JFK
194

BWI
188

LAX
126

ORD
173

DFW
155

HKG
162

LHR
146

MIA
122

PEK
164

CDG
127

NRT
199

SEA
113

0 0

0 0

0 0 00 0

01 1 1

12

2
split(126)

SFO
119

DCA
167

ATL
148

IAD
142

JFK
194

BWI
188

LAX
126

ORD
173

DFW
155

HKG
162

LHR
146

MIA
122

PEK
164

CDG
127

NRT
199

SEA
113

0 0 0 0 0 0 0

0 0 01

1

1

12

2

L:

merge

SFO
119

LAX
126

MIA
122

SEA
113

0

00

1

JFK
194

BWI
188

0

0

ATL
148
1

ORD
173

DFW
155

0

0

IAD
142
2

HKG
162

LHR
146

NRT
199

0

0

1

DCA
167
0

PEK
164
0CDG

127 1

fix-up

h2:this:

Figure 2: Splitting a leftist heap. We traverse the tree, unlinking all subtrees whose key value
strictly exceeds x = 126. We merge these trees (from left to right) to form the final result h2.
We traverse the current tree, update the npl values and swap subtrees so that the leftist property
holds.

When this process returns, we have a list L = ⟨u1, . . . , uk⟩ of maximal subtrees whose
nodes are to be placed in the new heap. These are ordered from left to right. We create
a new empty leftist heap, called h2, and we merge each of the elements of L into this
new heap, from left to right. That is, we perform h2.mergeWith(ui) for i = 1, 2, . . . , k.
(Unfortunately, this statement is not kosher because ui is not a heap, it is just a node.
But this is effectively what your program should perform.)

Finally, the original tree has had a number of subtrees removed from it. As a result,
the npl values may be wrong and the leftist property may be violated. (Note that the
other tree, h2 will be valid, because it was formed through merges.) To fix it, perform a
traversal of the tree, compute the proper npl values, and perform left-right child swaps

3

whenever needed to enforce the leftist property.

Now, both trees have their proper contents and satisfy the required properties. Finally,
return a reference to the leftist heap h2 as the final result.

Note that there are many different valid leftist heaps containing a given set of nodes, and
if your implementation differs from the one described above, you will obtain a different
tree and your results will not match ours.

Skeleton Code: As in the earlier assignment, we will provide skeleton code on the class Projects
Page. The only file that you should need to modify is LeftistHeap.java. Remember that you
must use the package “cmsc420 f22” in all your source files in order for the autgrader to work.
As before, we will provide the programs Part1Tester.java and Part1CommandHandler.java

to process input and output. You need only implement the data structure and the functions
listed above. Below is a short summary of the contents of LeftistHeap.java.

Class Structure: The high-level LeftistHeap class structure is presented below. The entries
each consist of a key (priority) and associated value. These can be any two types, but it must
be possible to make comparisons between keys. Our class is parameterized with two types,
Key and Value. We assume that the Key object implements Java’s Comparable interface,
which means that is supports a method compareTo for comparing two such objects. This is
satisfied for all of the Java’s standard number types, such as Integer, Float, and Double as
well as for String.

We recommend that the tree’s node type, called LHNode, is declared to be an inner class.
(But you can implement it anyway you like and give it any name you like.) This way, your
entire source code can be self contained in a single file.

public class LeftistHeap<Key extends Comparable<Key>, Value> {

class LHNode { // recommended node (you may change)

Key key; // key (priority)

Value value; // value (application dependent)

LHNode left, right; // children

int npl; // null path length

// ... any utility functions you want to define

}

// ... any private and protected members you need

public LeftistHeap() { ... } // constructor

public boolean isEmpty() { ... } // is the heap empty?

public void clear() { ... } // clear its contents

public void insert(Key x, Value v) { ... } // insert (x,v)

public void mergeWith(LeftistHeap<Key, Value> h2) { ... } // merge with h2

public Key getMinKey() { ... } // get min key

public Value extractMin() throws Exception { ... } // extract min

public ArrayList<String> list() { ... } // list entries

}

Efficiency requirements: The functions insert, mergeWith, and extractMin should all run in

4

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html
http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

O(log n) time. The function getMinKey() should run in O(1) time. The function list()

should run in time proportional to the size of the tree. A portion of your grade will depend
on the efficiency of your program.

The function split should run in time O(k log n), where k is the number of subtrees that
need to be merged together. (In the worst case, k may be as high as O(n), but your function
should be more efficient when k is small. If you follow the outline that we have given for
split, you should achieve this running time.)

The public interface should match what you are given in the skeleton code. You are free
to add whatever private and protected members (both data and functions, subject to these
efficiency requirements.)

Testing/Grading: Submissions will be made through Gradescope (you need only upload your
modified LeftistHeap.java file). We will be using Gradescope’s autograder and JUnit for
testing and grading your submissions. We will provide some testing data and expected results
along with the skeleton code.

The total point value is 80 points. Of these, 60 points will be for the heap operations excluding
split. Correctly implementing split is worth 10 points, and additional 10 points is reserved
for clean programming style and the above efficiency requirements.

5

