
CMSC 420: Fall 2022

Programming Assignment 2: Extended kd-Trees

Handed out: Thu, Oct 27. Due: Thu, Nov 10, 11:59pm. (Submission via Gradescope.)

Overview: In this assignment we will implement a variant of the kd-tree data structure, which
will call an extended kd-tree (or XkdTree) to store a set of points in 2-dimensional space. This
data structure involves a number of practical extensions over the standard kd-tree covered in
class. First, the tree will be extended, meaning that we distinguish between internal nodes,
whose only function is to subdivide space, and external nodes (or leaves), where the points are
actually stored. Second, we allow each external node to a small number of points, depending
on a parameter called the bucket size.

Points and Rectangles: The objects to be stored in the trees are 2-dimensional points. To save
you some effort, as part of the skeleton code, we will provide you with a class for 2-dimensional
points, called Point2D.java. This class will provide you with some utility functions, such
as accessing individual coordinates and computing distances. We will also provide you with
a class for storing axis-aligned rectangles, called Rectangle2D.java. This also provides a
number of useful functions, such as testing whether two rectangles are disjoint or whether
one contains the other.

Each point to be stored in the data structure will have an associated value, called its label.
In our case, the label is just a Java String. The resulting object is called a labeled point.
Rather than impose a particular class structure, a labeled point is any class that supports a
Java interface, which we call LabeledPoint2D.java. Here is the interface

public interface LabeledPoint2D {

public double getX(); // get point’s x-coordinate

public double getY(); // get point’s y-coordinate

public double get(int i); // get point’s i-th coordinate (0=x, 1=y)

public Point2D getPoint2D(); // get the point itself (without the label)

public String getLabel(); // get the label (without the point)

}

As the implementer of the data structure, you do not need to worry about the actual objects
being stored, as long as you access the object through the interface functions. Again, all of
these will be provided to you in our skeleton code.

Extended kd-Tree: The XkdTree data structure will be templated with the labeled-point type.
Since this is any object that implements the LabeledPoint2D interface, we will call it LPoint.
Your class declaration (which we will provide you) looks like this:

public class XkdTree<LPoint extends LabeledPoint2D> { /* fill this in */ }

An extended kd-tree involves two modifications to the standard kd-tree as discussed in lecture
(see Fig. 1). First, the tree is extended, meaning that there are two types of nodes, internal
nodes and external nodes. Second, rather than holding a single point, each external node
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stores a small set of points, called a bucket. The actual number ranges from 0 up to some
maximum number, called the bucket size. The bucket size is specified by the user when the
data structure is first constructed. You should think of it as a small positive integer, ranging
from perhaps 1 up to 10.
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Figure 1: An example of an extended kd-tree with bucket size 2 and bounding box [0, 10]× [0, 10].

Internal Nodes: Each internal node stores the splitting information, consisting of a cutting
dimension and a cutting value. The cutting dimension (or cutDim) indicates which axis
(0 for x and 1 for y) is used to determine which subtree the points belong to. The cutting
value (or cutVal) indicates where the cut occurs along this axis (see Fig. 1).

For example, if the cutting dimension is 0 (for x) and the cutting value is 5, then a point
p = (px, py) will be put in the left subtree if px < 5 and in the right subtree if px ≥ 5.
Note that the cutting value does not need to be the coordinate of any point in the tree.

External Nodes: Each external node stores a list (e.g., a Java ArrayList) of the labeled
points that lie within this node. The size of this list can vary between zero and the data
structure’s bucket size.

Note that there are no null pointers. Every internal node has two non-null children, which
may be external nodes, and external nodes have no children by definition. What if the tree
is empty? An empty tree is represented setting the root to point to a single external node
whose bucket is empty.

Requirements: Your program will implement the following functions for the XkdTree. While
you can implement the data structure internally however you like (subject to the style and
efficiency requirements given below), the following function signatures should not be altered.
Recall that Point2D is a 2-dimensional point, and an LPoint is any object that implements
LabeledPoint2D.

XkdTree(int bucketSize, Rectangle2D bbox): This constructs a new (empty) XkdTree

with the given bucket size and bounding box.

void clear(): This removes all the entries of the tree.

int size(): Returns the number of points in the tree. For example, for the tree of Fig. 1,
this would return 10. For efficiency, you should store this value in your structure, rather
than compute it by traversing the tree.
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LPoint find(Point2D pt): Determines whether a point coordinates pt occurs within the
tree, and if so, it returns the associated LPoint. Otherwise, it returns null. (Note that
the query is a standard 2-dimensional point, while the output is a labeled point.)

Unlike standard kd-trees, if pt lies directly on the cutting line (that is, pt[cutDim]
== cutVal), this point might lie in either the left subtree or the right subtree. (In the
standard kd-tree presented in class, it always lies in the right subtree.) Whenever you
visit a node where this is the case, you will need to check both subtrees of an internal
node. If it is found in either, then return the associated labeled point. If it is found in
neither, return null.

void insert(LPoint pt) throws Exception: Inserts a single labeled point pt in the tree.
You may assume that there are no duplicate points, but there may be duplicate coor-
dinate values. Inserting a single point is functionally equivalent to performing a bulk
insertion (see below) with a point set of size one.

void bulkInsert(ArrayList<LPoint> pts) throws Exception: Inserts a set of one or
more labeled points, pts, in the tree. You may assume there are no duplicate points. If
any point lies outside the bounding box, you should throw an Exception with the error
message "Attempt to insert a point outside bounding box".

The insertion is performed as follows. First, we determine the external nodes into which
each of the points falls. (If the point lies on the splitting line of an internal node, insert
it into the right subtree.) Next, consider each of the external node that has received
at least one new point. We merge all the new points together with the existing points
of this node’s bucket. (The built-in Java function addAll is useful for doing this.) If
the number of total number of points is not greater than the bucket size, we are done.
Otherwise, we need to split the bucket, as described next.

Splitting (Big View): The splitting process works as follows. First, we compute the
smallest bounding axis-aligned rectangle containing all the points. (The function
expand, which is provided in Rectangle2D is useful for doing this.) If this rectangle’s
width is greater than or equal to its height, the cutting dimension is set to 0 (that
is, x), and otherwise it is set to 1 (that is, y).
Next, compute the median coordinate along the cutting dimension and partition
the set about this median element into two sets, call them L and R. We create a
new internal node having this cutting dimension and set its cutting value to be
the median coordinate. The elements of L are then recursively inserted into its
left subtree and the elements of R are recursively inserted into the right subtree.
Whenever the number of remaining points is less than or equal to the bucket size,
we create a new external node and store the points there.

Splitting (Details): Care must be taken with the splitting process to avoid issues
that arise when points have duplicate coordinates along the cutting dimension. If
multiple points share the same coordinate value as the median, our usual convention
would put all of these points into the right subtree. But this may result in a highly
imbalanced tree (and even infinite looping if you are not careful). In order to ensure
that the tree is balanced, we want every partition to be as balanced as possible.
Here is how to implement this. (For the sake of uniformity in grading, it is a
requirement that you partition your points in this way.) Once the cutting dimension
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has been determined, sort the points according to cutting dimension with ties broken
by other coordinate. Suppose that there are n points, and let points[n] denote the
sorted sequence of points (this is probably an ArrayList). Let m = ⌊n/2⌋. If n is
odd, the cutting value is taken to be the unique median element, points[m]. If n
is even, the cutting value is taken to be the mean of the lower and upper medians,
that is, (points[m - 1]+ points[m])/2.
Next, define the left list L to be the sublist consisting of the first m elements.
Let’s use the notation points[i,j] to denote the subarray from points[i] to
points[j-1]. We have L = points[0,m]. Define the right list R to be the sublist
consisting of the last n −m elements, that is, R = points[m,n]. (Note that Java
provides a handy function, called sublist, which can be used to partition the list.)

Sorting Labeled Points: You might be wondering, “Do I need to write my own sorting
function?” (Answer: No, you should never write your own sorting algorithm.)
Java provides a flexible method sorting based on various criteria. There is a built-
in sorting function, Collections.sort. To instruct it how to sort, you provide
it a comparison function. (In the case of partitioning for insertion, this is either
lexicographically by (x, y) or lexicographically by (y, x), depending on the cutting
dimension).
In Java, this is done defining a class that implements the Comparator interface. Such
a class defines a single function, called compare, which compares two objects of the
desired type, and returns a negative, zero, or positive result depending on which
argument is larger. In our case, the objects are labeled points, LPoint. Here is a
brief example on how you might set this up. (A Google search for “Java sorting

with a Comparator” will reveal more examples.)

private class ByXThenY implements Comparator<LPoint> {

public int compare(LPoint pt1, LPoint pt2) {

/* compare pt1 and pt2 lexicographically by x then y */

}

}

private class ByYThenX implements Comparator<LPoint> {

public int compare(LPoint pt1, LPoint pt2) {

/* compare pt1 and pt2 lexicographically by y then x */

}

}

void delete(Point2D pt) throws Exception: (There is no deletion function required for
this assignment.)

ArrayList<String> list(): This operation generates a right-to-left preorder traversal of
the nodes in the tree. (Recall that right-to-left means that we visit the right subtree
before the left.) There is one entry in the list for each node of the tree. The output is
described below:

Internal nodes: Depending on whether the cutting dimension is x or y, this generates
either:

"(x=" + cutVal + ")" or "(y=" + cutVal + ")"

External nodes: This generates list of points in this bucket surrounding by square
brackets, "[" + ... + "]". The “...” is a list of the labeled points in the bucket,
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each enclosed in curly braces "{" + ... + "}". The points should be sorted by
their string labels (another Comparator!). To output each labeled point, you can
invoke the function point.toString(), which is defined in Airport.java.

For example, here is the result for the tree of Fig. 1. (Take note of spaces.)

(x=3.5)

(y=5.0)

(x=6.0)

[ {BWI: (8.0,8.0)} {DCA: (6.0,7.0)} ]

[ {SEA: (5.0,5.0)} ]

[ {JFK: (9.0,3.0)} {LAX: (4.0,2.0)} ]

(y=6.0)

(y=8.0)

[ {DFW: (3.0,8.0)} {SFO: (1.0,9.0)} ]

[ {ORD: (2.0,6.0)} ]

[ {ATL: (1.0,5.0)} {IAD: (3.0,4.0)} ]

Note that our autograder is sensitive to both case and whitespace. Our command-handler
program will convert this into a formatted tree structure:

Tree structure:

| | | [ {BWI: (8.0,8.0)} {DCA: (6.0,7.0)} ]

| | (x=6.0)

| | | [ {SEA: (5.0,5.0)} ]

| (y=5.0)

| | [ {JFK: (9.0,3.0)} {LAX: (4.0,2.0)} ]

(x=3.5)

| | | [ {DFW: (3.0,8.0)} {SFO: (1.0,9.0)} ]

| | (y=8.0)

| | | [ {ORD: (2.0,6.0)} ]

| (y=6.0)

| | [ {ATL: (1.0,5.0)} {IAD: (3.0,4.0)} ]

LPoint nearestNeighbor(Point2D center): This function is given a query point (regular
point, not a labeled point), and it computes the closest point. If the tree is empty, it
returns null. Otherwise, it returns a reference to the closest LPoint in the kd-tree. For
example, in Fig. 2, the nearest neighbor for center = (6, 4) would return a reference to
the point labeled LAX.
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Figure 2: Nearest-neighbor query using squared distances.
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Computing distances involves computing square roots, which is both unnecessary and
introduces floating-point errors. Instead, you should compute squared Euclidean dis-
tances. (This does not change the identity of the closest point). To assist you, the
Point2D and Rectangle2D classes both provide a utility function distanceSq(Point2D

pt), which computes the squared distance from the current object to point pt.

You should adapt the algorithm given in class to the context of extended trees. In
particular, when visiting an internal node, you should first visit the subtree that is closer
to the query point. Second, you should avoid visiting nodes that you can infer cannot
contain the nearest neighbor. To do this, keep track of the closest point seen so far,
and if node’s cell is farther away from the query point than this, then you should avoid
visiting the node. (Or if you visit it, you should discover this and return immediately.)

If there are multiple nearest neighbors of the query point, you may return any one of
them. (We will engineer the test data so this never happens, so there should be no
variance with our expected outputs.)

Java Node Structure: Because we have two types of nodes, we will need a more sophisticated
node structure. We use good object-oriented principles by defining a parent node type,
called Node. This is abstract, which means that we never create such a node. The actual
nodes are called InternalNode and ExternalNode. (You may name them whatever you like.)
Internal nodes store splitting information (cutting dimension and cutting value) and subtrees.
External nodes stores the bucket, which might be stored as a Java ArrayList.

An example of how this might look is shown below. Since this is all internal, you are free to
implement however you like. But, I would strongly encourage you to use object inheritance,
since this is just good programming style.

public class XkdTree<LPoint extends LabeledPoint2D> {

private abstract class Node { // generic node (purely abstract)

abstract LPoint find(Point2D pt); // find helper - abstract

// ... other helper functions omitted

}

private class InternalNode extends Node {

int cutDim; // the cutting dimension (0 = x, 1 = y)

double cutVal; // the cutting value

Node left, right; // children

LPoint find(Point2D q) { /* find helper for internal nodes */ }

// ... other helper functions omitted

}

private class ExternalNode extends Node {

ArrayList<LPoint> points; // the bucket

LPoint find(Point2D pt) { /* find helper for external nodes */ }

// ... other helper functions omitted

}
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// ... the rest of the class

}

You might observe that we don’t need to store the node types. This is handled automati-
cally by Java’s inheritance mechanisms. For example, suppose that we want to invoke the
find helper function on the root. Each node type defines its own helper. We then invoke
root.find(pt). If root is an internal node, this invokes the internal-node find helper, and
otherwise it invokes the external-node find helper.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You will need
to fill in the implementation of the XkdTree.java. We also provide some utility classes (e.g.,
Point2D and Rectangle2D). You should not modify any of the other files, but you can add
new files of your own. For example, if you wanted to add additional functions to any of the
classes, such as Point2D or Rectangle2D, it would be preferable to create an entirely new
class (e.g., MyRect2D), which you will upload with your submission.

As with the previous assignment, the package “cmsc420 f22” is required for all your source
files. As usual, we will provide a driver programs (tester and command-handler) for processing
input and output. You should not modify the signature of the public functions, but you are
free to set up the internal structure however you like.

Efficiency requirements: (10% of the final grade) For the sake of partitioning, your bulk insert
function is allowed to sort the points being inserted at each node of the tree. (You are
encouraged to think about more efficient methods. It is obviously inefficient to sort the
points by x at one node, then resort them by y at its child, and then resort them again by
x at its grandchild, but this is the sort of thing that the above construction algorithm will
do.) As mentioned above, you should use Java’s Collection.sort (or some other built-in)
sorting function, as opposed to implementing your own bubble sort algorithm (ugh!) or the
like.

You should have a variable that tracks the number of points in the tree in order to answer
the size operation efficiently.

The nearest-neighbor algorithm should follow the structure given in the lecture notes. Minor
variations are allowed, but your implementation should have the two major features as the
one given in class. First, it should prioritize visiting on the side of the tree that is closer to
the query point, and second, it should not visit subtrees that cannot possibly contain the
nearest neighbor.

Style requirements: (5% of the final grade) Good style is not a major component of the grade,
but you should demonstrate some effort here. Part of the grade is based on clean, elegant
coding. There is no hard rules here, and we will not be picky. If we deduct points, it
will because you used an excessively complicated structure to implement a relatively simple
computation.

The other part is based on commenting. You should have a comment at the top of each file
you submit. This identifies you as the author of the program and provides a short description
of what the program does. For each function (other than the most trivial), you should also
include a comment that describes what the function does, what its parameters are, and
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what it returns. (If you would like to see an example, check out our canonical solution to
Programming Assignment 1, on the class Project Page.)

Testing/Grading: As always, we will provide some sample test data and expected results along
with the skeleton code.

As before, we will be using Gradescope’s autograder for grading your submissions. You only
need to submit your XkdTree.java file. If you created any additional files for utility objects,
you will need to upload those as well.

Challenge Problem: (Remember, challenge problems count for extra-credit points, which are
only taken into consideration after the final cutoffs have been set.)

Implement a deletion operation. This is a public function with the following function decla-
ration:

public void delete(Point2D pt) throws Exception

If the point is not found in the tree, the deletion function throws an Exception with the
error message "Deletion of nonexistent point". Otherwise, it removes this point from
the kd-tree. If the deletion results in an external node becoming empty, and this external
node is not the root, then the tree should be restructured to eliminate this empty external
node. This will induce other changes in the tree. Since an internal node cannot have a null

child, removing an external node results in the removal of its parent. The external node’s
sibling will now be promoted, in the sense that it will become a child of its former grandparent.
Part of the challenge is for you to figure out these changes.

Note that repeated deletions can cause the tree to become unbalanced, but there is no re-
quirement that you do anything about rebalancing the tree. (When we study scapegoat trees,
we’ll see that there is an easy way to do this.)
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