CMSC 420: Fall 2022

Programming Assignment 3: Capacitated Facility Location (Updated 12/05)

Handed out: Thu, Dec 1. Due Mon, Dec 12, 11:59pm through Gradescope.

Background: In this assignment, we will ask you to combine the various data structures we
have implemented this semester to solve an important optimization problem from the field
of operations research. This falls within a broad category of optimization problems known
as facility location. To motivate the problem, imagine that you are in charge of deciding
where to put a set of service centers for an organization. For example, this might be the
locations of cell towers in city, the locations of retail outlets like coffee shops, or the locations
of neighborhood facilities like post offices and schools. You want to distribute your service
centers close to where your customers/clients are located, but there is a maximum limit, or
capacity, to the number of clients a given center can serve. It is customary to refer to the
client locations as demand points, since we think of each of them as demanding service which
we need to provide. We don’t want our customers to travel too far, so we wish to keep the
travel distance from each demand point to its assigned service center to be small.
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Figure 1: (a) A set of 21 demand points and (b) a possible solution to the discrete k-capacitated
facility location problem, for £ = 3. (This test case can be found in test04-input.txt)

Discrete Capacitated Facility Location: This problem can be modeled mathematically as fol-
lows. Let P = {p1,...,pn} denote the set of demand points in R? (see Fig. 1(a)), and the
integer k denote the maximum capacity of any center. The objective is to determine the



locations of a set of service centers C = {cy, ca, ...}, and an assignment of each demand point
to a one of these centers, so that each center is assigned to serve at most k demand points (see
Fig. 1(b)). For each center c;, define service radius r; to be the maximum distance to any of
the demand points assigned to it. Define the cost of the solution, denoted cost(C) = >_,r;.
The objective is to compute a set of centers satisfying the capacity constraints and minimizing
the cost. This is called the discrete k-capacitated facility location problem.

Unfortunately, there is a trivial solution to the problem, namely to make every point of P a
service center. To prevent this, let us add the additional constraint that every service center
must be assigned to ezactly k demand points (including itself). As a consequence, we will
need to add the condition that the capacity k evenly divides the total number of points.

Greedy Heuristic: This problem is NP-hard, so we are not aiming to find an optimal solution.
Instead, we will implement a common heuristic solution, called the greedy solution. This is
computed as follows:

e Initialize the set of service centers to the empty set, that is, C' < (.
e While P # (), repeat the following steps:

— For each p; € P compute its k-nearest neighbors (including itself) from P. Let r;
denote the distance from p; to its kth nearest neighbor, called its radius.

— Find the point p; that has the smallest radius value r;. Add p; to C. Remove p;
and its k — 1 other nearest neighbors from P.

e Return C and the associated assignments as the final result.

Implementing the Greedy Heuristic: Unfortunately, a direct implementation of the above al-
gorithm will not be very efficient. First off, computing nearest neighbors without the aid of a
data structure is very slow. Also, with each iteration, we delete k points from P, which will
affect the nearest-neighbor radii of the other points.

Instead, we will use the data structures we have implemented this semester to help us out.
First, we will store the points in a spatial index (the extended kd-tree from Project 2) so that
k-nearest-neighbor queries can be answered efficiently. Second, we will store service centers
c¢; and the associated radius values r; in a priority queue (the leftist heap from Project 1).
To extract the next center, we extract the minimum key from the priority queue.

We still have the problem that whenever we delete a point from P, it might affect the result
of an earlier k-nearest-neighbor queries. To handle this, we will store not only the service
center and radius, but all ¢;’s k-nearest-neighbors in the priority queue. When we extract a
candidate cluster center, we will search the tree to see that all the points assigned to it still
exist. If so, this cluster of points is valid, and add ¢; to C' and delete all the points in its
cluster. If not, we recompute c;’s k-nearest neighbors, and recompute its new radius r;, and
put this entry back in the priority queue. The algorithm is outlined below. (Also see the
description of extractCluster below.)

e Initialize the set of service centers to the empty set, that is, C' < ). Create a new
(extended) kd-tree and add all the points of P in bulk to this tree. Create an new
(leftist) priority queue.



e For each point p; € P, use the kd-tree to compute its k-nearest neighbors (including
itself). Let L; be a list storing these k points, and let r; denote the distance to the
farthest of these points. Store the key-value pair (r;, L;) in the priority queue.

e While P # (), repeat the following steps:

— Use the extract-min operation to remove the pair (7, L;) from the queue having
the smallest radius. Let ¢; denote the associated cluster center. (Note: In our
implementation, we will assume that the elements of L; are listed in increasing
order of distance from the center point. This means that ¢; will always be the first
element in the list.)

— For each ¢; € L;, perform a find operation on the kd-tree to see whether g; is still
in the tree. If not, break out of the loop in failure.

— If we exited the loop with success, delete all the points of L; from the kd-tree. Add
¢; to our list of service centers and the points of L; (including ¢; itself) are the
demand points assigned to it.

— If we exited the loop with failure, there are two cases. If ¢; is still in the kd-tree, we
perform a k-nearest neighbor search to compute its new list L} of nearest neighbors.
Let r} be the distance to the farthest point in the new list. (Note: Since we assume
that L] is sorted by distance, r; will be the distance from ¢; to the last point in the
list.) Insert the pair (r}, L)) into the priority queue. Otherwise, (if ¢; is not in the
kd-tree) do nothing. In either case, we stay in the loop until we find a valid cluster.

e Return C and the associated assignments as the final result.

In order to implement the above algorithm, you will need to make two enhancements to the
kd-tree from Project 2. First, you will need to implement a delete operation, and second you
will need to implement a k-nearest-neighbor operation. We will discuss these in further detail
below.

Deletion and k-Nearest Neighbors

What are the main changes to your kd-tree implementation from Project 2?7 These are
the operations of deletion and k-nearest neighbors (k-NN)queries. Along the way we will
implement a useful utility data structure.

void delete(Point2D pt) throws Exception: This deletes the point pt from the tree. It
begins by searching for the point. If it is not found, it throws an Exception with the
error message "Deletion of nonexistent point". Otherwise, it removes this point
from the external-node containing it. (Note that this is very different from the deletion
operation for standard kd-trees. We do not need to find a replacement node, because all
deletions occur from the leaf level.)
If the deletion results in an empty bucket, we may need to take additional action. If the
external node is the root of the tree, we just leave the external node empty. (This only
happens when we delete the last point, so the tree is now empty.) Otherwise, the tree
needs to be modified to avoid having an empty bucket. Let q be the external node where
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Figure 2: An example of an extended kd-tree with bucket size 2 and bounding box [0, 10] x [0, 10].
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Figure 3: Deleting (6, 7) results in an empty bucket. We remove this external node q and its parent
p, replacing them with the sibling node s.

the deletion took place, let p be its parent, let gp be q’s grandparent, and let s be g’s
sibling (see Fig. 3). We unlink both q and p from the tree, and s replaces p as the child
of gp. Note that if p is the root of the tree, s becomes the new root node. In Fig. 4 we
present an example of a series of deletions resulting eventually in an empty tree.

ArrayList<LPoint> kNearestNeighbor(Point2D q, int k): Computes the k points that
are closest to the query point q. The result is a Java ArrayList of LPoint. If the tree
is empty, it returns an empty ArrayList. If k exceeds the number of points in the tree,
the list contains only as many points as there are in the tree. The list should be sorted
in increasing order of (squared) distance from the query point (see Fig. 5).

How to implement kNearestNeighbor? The k-NN algorithm is quite similar to that of the sin-
gle nearest-neighbor. In the that algorithm, we maintained a variable best, which stored the
closest point seen so far in the search. To generalize this for k-nearest neighbors, we will
maintain the k closest points seen so far. To do this, you will implement a useful utlity data
structure, called MinK. Each time we encounter a new point, we add it to the MinK structure,
but no matter how many entries are inserted, this structure only retains the smallest k items.
In our case, elements in MinK will be sorted by their squared distance from the query point,
so we only save the k closest points.

Given this data structure, we can answer k-nearest neighbor queries as follows. First, we
get the kth (that is, maximum) entry from the MinK structure (using an operation getKth
described below). If the cell is farther away relative to q, we know that nothing in this subtree
can provide a better point than one of the closest k, so we skip this node. Otherwise, we add
a key-value pair consisting of this node’s point and its distance from q to the MinK structure.
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Figure 4: The operation delete(8,8) removes BWI from its bucket. Next, delete(6,7) removes
DCA from its bucket, resulting in an empty bucket, causing SEA to replace its parent. Similarly,
delete(9,3) removes both JFK and its parent, making SEA the new root. Finally, deleting (5,5)
results in an empty tree with a single empty external node.

(Remember, this only saves the k closest points.) We then recursively visit the two children,
giving priority to the one that is closer to q. The code block below shows how to do this for
a standard kd-tree. Note that, unlike the code given in class, there is no need to return mink,
because it is passed as a reference parameter. You will need to convert this to work with your
extended kd-tree.
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Figure 5: k-NN query for & = 3 and ¢ = (8, 2) returns the sorted point list [JFK, LAX, DCA].

The MinK data structure: All that remains is to explain how MinK works. It is defined generi-
cally, based on the key and value pairs it stores. Here is the declaration:

public class MinK<Key extends Comparable<Key>, Value> { ... }

When we use it for k-NN queries, the keys will be squared distances to the query point (of type
Double) and the values will be points of type LPoint. It has the following public members:

MinK(int k, Key maxKey): This is the constructor, which is given the number of items k
to maintain and the maximum possible key value. For our puroposes, the value k will
just be the value k£ in the k-NN query, and since we are sorting by squared distances,



Helper for k-NN search in a standard kd-tree

void kNNHelper (Point2D q, KDNode p, Rect2D cell, MinK minK) {

if (p == null) return // fell out of tree?

if (cell.distTo(q) > minK.getKth()) return // cell is too far away?
minK.add(p.point.distTo(q), p.point) // add this point

int cd = p.cutDim // cutting dimension

Rectangle leftCell = cell.leftPart(cd, p.point) // get child cells
Rectangle rightCell = cell.rightPart(cd, p.point)

if (qlecd] < p.point[cd]) { // q is closer to left?
kNNHelper(q, p.left, 1leftCell, minK)
kNNHelper(q, p.right, rightCell, minK)

} else { // q is closer to right?
kNNHelper(q, p.right, rightCell, minK)
kNNHelper(q, p.left, leftCell, minK)

the value of maxKey can be set to Double.POSITIVE_INFINITY. (Save this value, since
it will be needed for getKth below.)

int size(): This returns the current number of elements in the structure. Initially the size
is zero, and as elements are added the size increases up to a maximum of k.

void clear(): This removes all entries, reseting the structure to its initial empty state.

Key getKth(): If the structure has k elements, this returns the maximum key value among
these elements. Otherwise, it returns maxKey value given in the constructor. (Why
maxKey and not null? The reason is that this is what works most conveniently for the
k-NN helper. If we have not yet seen k points, we will never decline the opportunity to
visit a node.)

ArrayList<Value> list(): Create a ArrayList of the values in the structure, sorted in
increasing order by their key values. (Note: We will not modify the contents of the
values stored in the returned list, so it is not necessary to perform a “deep copy” of the
values. You can just copy the references into the resulting ArrayList.)

void add(Key x, Value v): This adds the given key-value pair to the current set. If the
structure has fewer than k element, this entry is added, increasing the size by one. If
the structure has k elements and x is greater than or equal to the largest, the operation
is ignored. If the structure has k elements and =z is less than the largest, the pair (z,v)
is added, and the previous largest is removed. Thus, the size of the structure remains k.

An example is shown in Fig. 6.
How to implement MinK? You have two choices on how to implement the MinK structure:

Simple and Slow: (Efficiency penalty of 10 points.) Just store the key-value pairs in an
array (or ArrayList) sorted by key values (similar to Fig. 6). When a new entry is
added, simulate one step of insertion-sort, by sliding all the larger elements down one
position until finding the slot where the new item fits. If there were already k elements,
the largest element just falls off the end of the array. (This takes O(k) time per insertion.)
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Figure 6: Example of MinK operations for k£ = 3 and maxKey = co.

Smart and Speedy: The second method is more efficient, and you will get full credit. Main-
tain a standard binary heap, as used in heap-sort. (Recall Lecture 5 on Heaps). It will
be max-heap ordered with the largest element stored at the root. When a new entry
is added, there are two cases. First, if there are currently fewer than k elements in the
heap, add this element to the next available position in the heap array and sift it up to
its proper location. Otherwise, if there are k elements in the heap, compare the newly
added element to the root. (The root has the largest entry.) If it is greater than or equal,
ignore the insertion. If it is less than the root’s key, replace the root with the new item,
and sift it down to its proper location. (This takes O(logk) time per insertion.) Note
that the operation list will need to copy the contents of structure to a new ArrayList
and then sort them by key. If you like, you may do this by implementing heap-sort. But
it is fine for full credit to simply invoke Collections.sort.)

Back to Facility Location

In order to test your facility location algorithm, you will implement a class called KCapFL,
for k-capacitated facility locator. It will implement the greedy facility location algorithm,
and we will add a few additional functions for grading purposes to allow us to inspect how
your function works. This class is parameterized by the point type, which like our kd-
tree, will just be labeled points. The declaration is public class KCapFL<LPoint extends
LabeledPoint2D>. It will store the following pieces of private data:

int capacity: This is the maximum capacity of any service center, which we have called &
up to now

XkdTree<LPoint> kdTree: A kd-tree for storing the points

LeftistHeap<Double, ArrayList<LPoint>> heap: A leftist heap for storing key-value pairs.
Each pair is of the form (r;, L;), where r; is the squared radius of this cluster of points
and L; is the set of points in the cluster. The heap ordered by the (squared) service radii,
that is, the squared distance to the kth nearest neighbor. (As with the programming
assignment, this is min-heap ordered, with the smallest radius at the root.)

It supports the following public functions:

KCapFL(int capacity, int bucketSize, Rectangle2D bbox): This isthe constructor. It
sets the capacity, creates a new kd-tree with the given bucket size and bounding box,
and creates a new leftist heap.



void clear(): This clears the data structure by clearing both the kd-tree and the leftist
heap.

void build(ArrayList<LPoint> pts) throws Exception: This initializes the structure.
First, it checks whether the number of points is strictly greater than zero and is evenly
divisible by the capacity. If not, it throws an Exception with the error message "Invalid
point set size". Otherwise, it performs a bulk-insertion of the points into your kd-
tree. Finally, it creates the initial radii. Do do this, it enumerates all the points. For each
point p; it computes its k-nearest neighbors using the kd-tree. et L; be the ArrayList
of labeled points returned by the k-nearest neighbor procedure. Let ¢; be the center
point (the first point in L;). Let r; be the squared distance to the farthest point (the
kth point of L;). Insert the key-value pair (r;, L;) in your leftist heap. (There is not
need to perform a deep copy. Just copy the reference to L;.)

ArrayList<LPoint> extractCluster(): (Updated 12/05) This performs one step of the
greedy algorithm. First, if the kd-tree is empty, return null as a signal that there are
no more clusters. Otherwise, repeat the following steps until we are successful in finding
a cluster. Extract the next cluster (r;, L;) from your priority queue (the leftist heap).
Using the kd-tree find operation, check whether every point of L; is still in the kd-tree.
If so, we have successfully found a cluster, and otherwise we haven’t. Here is how to
process each of these cases:

Success: Delete all the points of L; from the kd-tree, and return L; as the answer.

Failure: Let ¢; be the first point of L; (the service center). If ¢; is still in the kd-tree,
compute a new list L} of its k-nearest neighbors, let 7 be its new radius, and add
the pair (r], L}) back into the leftist heap. (Note that ¢; will still be the first element
of L, so we have effectively replaced an old damaged cluster for ¢; with a new one.)
Otherwise, (¢; is not in the kd-tree) do nothing. In either case, continue extracting
clusters from the priority queue until we succeed.

Note that the leftist heap will throw an Exception if you attempt to extract when there
are no more elements left. In theory, this should not happen, since if you still have points
in your kd-tree, you should still have clusters in your leftist heap. Nonetheless, you will
need to create a try-catch block to keep the compiler happy, but if you ever reach the
catch section, there is something wrong in your program.

ArraylList<String> listKdTree(): This just invokes the list operation on your kd-tree
tree (for debugging).

ArrayList<String> listHeap(): This just invokes the 1ist operation on your leftist heap
tree (for debugging).

More Information

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You will
need to fill in the implementation of the KCapFL. java, XkdTree. java, LeftistHeap. java,
and MinK.java. As before, we will provide Point2D, Rectangle2D), and so on. We will also
provide the testing programs, Part3Tester. java and Part3CommandHandler. java. As with
the previous assignment, the package “cmsc420_£22” is required for all your source files.


http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

What if I cannot finish? Give priority to working on point deletion and k-nearest neighbors. If
you do just those, you will get roughly 50% credit. The remainder will be for the KCapFL
functionality and the usual efficiency/style points. But, don’t be intimidated by the lengthy
description. The lengthy description above is almost a line-for-line presentation of the KCapFL
class. My class was only about 1/5 as long as my leftist heap and kd-tree implementations.

What if my kd-tree/leftist heap didn’t work? We’ll make minimal versions of these programs
available to you. You will still need to implement deletion and k-nearest neighbors.

Efficiency requirements: (20% of the final grade) 10% for efficiently implementing k-NN and
10% for efficiently implementing MinK.

Style requirements: (5% of the final grade) Good style is not a major component of the grade,
but you should demonstrate some effort here. Part of the grade is based on clean, elegant
coding. There is no hard rules here, and we will not be picky. If we deduct points, it
will because you used an excessively complicated structure to implement a relatively simple
computation.

The other part is based on commenting. You should have a comment at the top of each file
you submit. This identifies you as the author of the program and provides a short description
of what the program does. For each function (other than the most trivial), you should also
include a comment that describes what the function does, what its parameters are, and
what it returns. (If you would like to see an example, check out our canonical solution to
Programming Assignment 1, on the class Project Page.)

Testing/Grading: As always, we will provide some sample test data and expected results along
with the skeleton code.

As before, we will be using Gradescope’s autograder for grading your submissions. You need
to submit KCapFL.java, XkdTree. java, LeftistHeap. java, and MinK. java files. If you
created any additional files for utility objects, you will need to upload those as well.


http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html

