
CMSC 420: Fall 2022

Solutions to Midterm 1 Practice Problems

Solution 1:

(a) The number of leaves is exactly ⌈n/2⌉. In class we showed that an extended binary tree with
m internal nodes has m + 1 external nodes. Every full tree can be viewed as an extended
binary tree, where leaves are external nodes. Thus, a full tree with n = m+(m+1) = 2m+1
total nodes has m+ 1 = (n+ 1)/2 leaves. Observe that n is always odd, so this can also be
written as ⌈n/2⌉.

(b) Answer: (i) Definitely full, (iii) Height larger by exactly 1. Explanations: Because the keys are
inserted in arbitrary order, the tree containing the seven keys {1, 3, . . . , 13} can have pretty
much any possible structure. This tree has exactly eight null pointers, and (because they
alternate with the original keys) the newly inserted keys {0, 2, . . . , 14} create one new node in
each of these null pointers. (This fact is not hard to prove by induction.) As a consequence,
the new tree is full (since the internal nodes hold the odd keys and the even keys fill in all
the null pointers), and the height has increased by exactly one. Since the original tree is
arbitrary, the final tree need not be complete.

(c) True: Generally, given an inorder threaded tree, it is possible to travel from any node to its
inorder predecessor or successor. By repeating this, we can reach any node from any other.

(d) The sibling is immediately before or after each element. The left child is at an even index and
the right child is at an odd index. So, we can always find the sibling by toggling the lowest-
order bit. If ⊕ denotes the exclusive-or operator, we have sibling(i) = i⊕ 1. Alternatively,
we can do this by cases with sibling(i) = i+ 1 if i mod 2 = 0 and i− 1 otherwise.

(e) Min: 0, Max: (lg n) ± O(1). The minimum occurs when the right child of the root is null.
The maximum happens for a left-complete binary tree. (I believe that the most accurate
expression is ⌊lg(n+ 1)⌋ − 1.)

(f) Min: log3(2n+ 1), Max: lg(n+ 1) (where lg ≡ log2).

Given a 2-3 tree with ℓ levels, the number of nodes is minimized when every node is a 2-node.
Thus, n ≥

∑ℓ−1
i=0 2

i. By the formula for the geometric series, we have n ≥ 2ℓ−1. Now, solving
for ℓ, we have ℓ ≥ lg(n+ 1).

Given a 2-3 tree with ℓ levels, the number of nodes is maximized when every node is a 3-node.
Thus, n ≤

∑ℓ−1
i=0 3

i. By the formula for the geometric series, we have n ≤ (3ℓ − 1)/2. Solving
for ℓ, we have ℓ ≥ log3(2n+ 1).

(g) Min: 0, Max: h+ 1: If all the nodes of a 2-3 tree are 2-nodes, there are no red nodes at all.
If all the nodes are 3-nodes, then the rightmost path in the 2-3 tree, has h edges and h + 1
nodes. Each of these becomes a black-red pair, so there are h+ 1 red nodes.

(h) With standard binary search trees, the expectation was over all n! insertion orders. With
treaps, the expectation was over all n! orders of the priority values. The latter is preferred,
because the data structure’s expected performance is not dependent on the insertion order.
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(i) The node storing the smallest key x1 is guaranteed to be black. This is due to the AA-tree
constraint that that each red node is the right child of its parent, and hence its key must be
larger than its parent.

(j) n/8: Recall that in order to reach level i, a node must throw i consecutive heads, which
occurs with probability 1/2i. Therefore, there are n/2i such nodes in expectation, which
yields n/8 for i = 3. (Observe that half of these nodes, n/16, terminate at this level and the
rest continue to higher levels.)

Solution 2: First observe that each union takes O(1) time, and since there are at most m unions,
the total cost for all the unions is O(m). To bound the time spent in the finds we classify the tree
links as being of two types. Links that go directly to a root are said to be shallow, and all others
are said to be deep. Since there are at most m unions, there are at most m−1 links (of both types)
in the tree.

Each find operation can traverse at most one shallow link, which implies that the total time
spent traversing shallow links is bounded by the number of find operations, which is O(m). Every
time we traverse a deep link, it becomes shallow (due to path compression). Therefore, the total
time spent traversing deep links is at most the total number of links, which is m−1 = O(m). Since
the total time for traversing both short and deep links is O(m), the total time spent in all find
operations is O(m).

Solution 3:

(a) Since n is of the form 2k−1, it follows that in a complete binary tree each subtree of the root
has exactly (n − 1)/2 nodes. If we start with a left chain and do (n − 1)/2 right rotations,
then we have a tree in which the median is now at the root, the left subtree is a left chain
and the right subtree is a right chain (see Fig. 1). We can rebalance each of these subtrees
recursively (but reversing left and right on the right subtree).
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Figure 1: Rotating a tree into balanced form.

To keep track of whether we are fixing a left chain or right chain, we pass in a parameter
direc which is either LEFT or RIGHT. The initial call is balance(root, n, LEFT).

balance(BinaryNode p, int n, Direction direc) {
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if (n <= 1) return // one node?---done

if (direction == LEFT) // subtree is left chain

for (i = 0; i < n/2; i++) p = rotateRight(p)

else // subtree is right chain

for (i = 0; i < n/2; i++) p = rotateLeft(p)

balance(p.left, n/2, LEFT) // rebalance left subtree

balance(p.right, n/2, RIGHT) // rebalance right subtree

}

(b) Let R(n) denote the number of rotations needed to rotate an n-node tree into balanced
form. After performing n/2 rotations, we then invoke the function on two subtrees, each with
roughly n/2 nodes. The total number of rotations satisfies the following recurrence:

R(n) =

{
1 if n = 1
2R(n/2) + (n/2) otherwise.

This is essentially the same recurrence that arises with sorting algorithms like MergeSort. By
applying any standard method for solving recurrences (e.g., the Master Theorem or expansion)
it follows that the total number of rotations is O(n log n). (Note by the way that it is possible
to modify this proof to show that it is possible to convert any n-node binary tree into any
other with O(n log n) rotations.)

Solution 4: To compute the inorder successor of a node, we first check whether its right child is
not null. If so, (as in finding the replacement for a deletion) we find the leftmost node in the right
subtree (see Fig. 2(a)). Otherwise, we iteratively follow parent links until we first find an ancestor
where we lie in the left subtree of this ancestor (see Fig. 2(b)). If no such ancestor is found, p must
be the last inorder node of the tree, and we return null.
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Figure 2: Solution to Problem 4(b): Inorder successor.

Node inorderSuccessor(Node p) { // find p’s inorder successor

if (p.right != null) { // p has a right subtree?

Node q = p.right // go to its right subtree

while (q.left != null) q = q.left // find its leftmost node

return q

}

else {

Node q = p.parent // follow p’s ancestor chain

while (q != null && p == q.right) { // until we are a left child
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p = q

q = q.parent

}

return q

}

}

Observe that the program visits at most one node for each level of the tree, therefore its running
time is proportional to the tree’s height.

Solution 5: The algorithm performs an inorder traversal of the tree, keeping track of the depth
of the nodes visited. If it falls out of the tree or arrives at a node of depth greater than d, it
returns. Otherwise, it invokes itself on the left subtree (incrementing the current depth by one),
then processes the current node by checking if the depth matches d, and then invokes itself on the
right subtree.

We present the recursive helper below, which takes as arguments the current depth of the node,
the target depth d, the current node p. The initial call is atDepth(0, d, root).

void atDepth(int currDepth, int d, AVLNode p) {

if (p == null || currDepth > d) return

else

atDepth(currDepth + 1, d, p.left)

if (currDepth == d) output p.key

atDepth(currDepth + 1, d, p.right)

}

We assert that the running time is proportional to the number nodes of depth d or lower. First
observe that we only visit nodes at depth d + 1 or smaller. This is more than what we want, but
observe that the number of nodes at depth d+ 1 is at most twice the number of nodes at depth d
(one for the left child and one for the right child), thus the number of nodes visited is asymptotically
the same.

Solution 6: This is proved by induction on the height of the tree. For the basis cases, observe
that an AVL tree of heights h = 0 or 1 has a root node, and so it is full at depth ⌊h/2⌋ = 0.

Let us make the (strong) induction hypothesis that for any h ≥ 2, an AVL tree of strictly
smaller height h′ < h is full at level ⌊h′/2⌋, and we will use this to prove the result for h itself.

An AVL tree of height h is formed from two AVL trees, one of height exactly h − 1 and the
other of height either h− 1 or h− 2. By the induction hypothesis, both these subtrees are all full
up to depth at least ⌊(h− 2)/2⌋. Therefore, by including the root level, the entire tree is full at
one higher depth, that is,

⌊
h−2
2

⌋
+ 1. Using the identity that ⌊x− 1⌋ = ⌊x⌋ − 1, we conclude that

the entire tree is full up to depth⌊
h− 2

2

⌋
+ 1 =

⌊
h

2
− 1

⌋
+ 1 =

⌊
h

2

⌋
− 1 + 1 =

⌊
h

2

⌋
,

as desired.

Solution 7:

(a) We go up to the parent and determine which of its children is p. We then respond with the
next child, if this child exists. Clearly, this takes constant time.
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Node23 rightSibling(Node23 p) {

q = p.parent

if (q == null) return null // root node has no sibling

else {

if (p == q.child[0]) // p is child #1?

return q.child[1] // answer is child #2

else if (q.nChildren >= 3 && p == q.child[1]) { // p is child #2?

return q.child[2] // answer is child #3

else

return null // no child following p

}

}

(b) We walk back towards the root, as long as we are the rightmost child of our parent. We then
go to our right sibling and walk down along the leftmost child the same number of levels. We
ascend the tree and then descend, so the running time is proportional to the tree’s height,
which is O(log n). There is an elegant recursive implementation of this idea. If a node has a
right child, then its right child is its level successor. If not, its level successor is the leftmost
child of the level successor of its parent. (By our assumption that all leaves are at the same
level, if the parent’s level successor is non-null, its leftmost child exists.)

Node23 levelSuccessor(Node23 p) {

if (p == null) return null;

else if (rightSibling(p) != null) return rightSibling(p);

else {

q = levelSuccessor(p.parent)

if (q == null) return null

else return q.child[0]

}

}

(c) There are at most n nodes on any level and each invocation of levelSuccessor takes O(log n)
time, so O(n log n) is an obvious upper bound. However, it is not a tight bound. Suppose
we consider the worst-case of starting at the leftmost leaf node. The various invocations of
levelSuccessor visit every edge of the tree twice, once moving up the edge and once moving
down. (Trace the code and you will see this easily.) Since a tree with n nodes has n−1 edges,
it follows that the running time is just O(n).

Solution 8:

(a) For i ≥ 0, let n(i) denote the number of nodes at depth i in an alternating 2-3 tree (where
the root is at depth 0. Clearly, n(0) = 1, and for i ≥ 1:

n(i) =

{
2n(i− 1) if i is odd
3n(i− 1) if i is even.

By expanding two levels of this recurrence, it is easy to see that for any n ≥ 2 (irrespective
of i’s parity) n(i) = 6ni−2. By repeatedly expanding this (or induction, if you prefer), it is
easy to see that n(2k) = 6kn(0) = 6k. Also, since 2k + 1 is odd, we have n(2k + 1) = 2 · 6k.
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Therefore, we have the following general formula for the number of nodes at level i of the
alternating 2-3 tree:

n(i) =

{
2 · 6(i−1)/2 if i is odd

6i/2 if i is even.

This can also be expressed without resorting to cases with the following equivalent formula

n(i) = 2⌈i/2⌉3⌊i/2⌋.

(b) We can use the number of nodes to derive the number of keys. If i is even, all the nodes are
2-nodes, and since each contains a single key, we have k(i) = n(i) If i is odd, all the nodes
are 3-nodes, and each contains two keys, so we have k(i) = 2n(i). In summary, we have

k(i) =

{
4 · 6(i−1)/2 if i is odd

6i/2 if i is even.

Solution 9: We will show that the amortized cost is t for some constant t. The expanded array has
size γm of which m are occupied, so the next reallocation occurs after at least γm−m = (γ− 1)m
operations. If we charge t tokens for each operation, and use one for each push, we accrue t − 1
tokens per operation, for a total of at least (t − 1)(γ − 1)m tokens. We need these to pay the
copying cost of δγm. (A common error is to take the cost to be δm, but note that the size of the
array being copied is γm, not m, which increases the copying cost by a factor of γ.) Therefore, we
select t so that (t− 1)(γ − 1)m ≥ δγm. Setting t = 1 + δγ/(γ − 1) satisfies this.

Solution 10: To expose a node, we first apply a standard descent to find the exposed node, and
we set the priority to −∞ (actually Integer.MIN VALUE). We then walk back up the search path
to the root. As we return from a call to expose, the exposed node has replaced the child. Thus, if
we apply expose to the left subtree, a single right rotation suffices to move it to the current node.
We then return this value. (The right side is symmetrical.)

TreapNode expose(Key x, TreapNode p) {

if (p == null) // error - key not in tree

throw Exception("Key not found")

else if (x < p.key) { // x is smaller - search left

p.left = expose(x, p.left)

return rotateRight(p) // rotate the exposed node up

}

else if (x > p.key) { // x is larger - search right

p.right = expose(x, p.right)

return rotateLeft(p) // rotate the exposed node up

}

else { // found it

p.priority = Integer.MIN_VALUE // set priority to -infinity

return p

}

}

Solution 11: The algorithm operates essentially the same as the find operation for skip lists.
The main difference is that, whenever we follow a link, we count the number of elements that
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the link spans. The other modification is that, rather than advancing when p.next[i].key <= x,
we instead use p.next[i].key < x. (Alternatively, you could leave the condition the same, but
decrement the count by 1 if the key is found.)

int countSmaller(Key x) {

int i = topmostLevel // start at topmost nonempty level

SkipNode p = head // start at head node

int count = 0 // number of smaller elements

while (i >= 0) { // while levels remain

if (p.next[i].key < x) {

count += p.span[i] // count number of skipped items

p = p.next[i] // advance along same level

}

else i-- // drop down a level

}

return count // return final count

}

Solution 12: This is true, as shown in the following theorem.

Theorem: Given a splay tree T0 and any two keys x, y ∈ T , the trees T1 resulting from splay(x);

splay(y) and T2 resulting from (splay(x); splay(y))2 are identical.

Proof: We may assume that x < y, since the other case is left-right symmetrical. (This is be-
cause all the splay operations are left-right symmetrical.) We assert that, after performing
splay(x); splay(y), T1 has one of two possible structures:

(a) The root node is y and its left child is x (see Fig. 3(a)).
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Figure 3: Repeated splaying.

(b) The root node is y and its left-left grandchild is x (see Fig. 3(b)).

To see this, observe that after splay(x), x is at the root of the tree. The final rotation of
splay(y) is either Zig (implying that x is now the left child of y), Zig-Zig (implying that y
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was the right-right grandchild and now x is its left-left grandchild), or Zig-Zag (implying that
y was x’s right-left grandchild, and now x is y’s left child).

In case (a), the next splay(x); splay(y) will right rotate and then left rotate the root (see
Fig. 3(a)), which leaves the tree unchanged. In case (b), the next splay(x); splay(y) will
Zig-Zig x back up to the root and then Zig-Zig y back up to the root (see Fig. 3(a)). In either
case, we wind up back where we started.

Here is an interesting question, which is suggested by the above problem. Consider any se-
quence of distinct k ≥ 1 keys, ⟨x1, . . . , xk⟩ in a splay tree T . Are the trees resulting from
(splay(x1) . . . splay(xk)) and (splay(x1) . . . splay(xk))

2 always the same? (Honestly, I don’t know
the answer.)
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