
CMSC 420: Fall 2022

Solutions to Practice Problems for the Final Exam

Solution 1:

(a) Only (iii) is true: Both (i) and (ii) are easily seen to be false once you have enough nodes. In
an inorder traversal, internal and external node alternate with each other.

(b) (iii) and (v): A replacement node is needed whenever the node containing the deleted key has
two non-null children. (Replacements are never needed for leaves and may not be needed for
the root if it has only one child.) Selecting the replacement only from the right subtree can
lead to less balanced trees over time, and so even though it is a common convention, selecting
exclusively from the right subtree is not an optimal strategy.

It is a bit surprising to note that at most one replacement will be needed per deletion. A
replacement node is either the largest key in the left subtree or the smallest key in the right
subtree. Such a node can have at most one child. Hence, once a replacement is performed,
the node to be recursively deleted has just a single child and does not need a replacement!

(c) 2 (assuming a double rotation is counted as two): In AVL tree-insertion, after the first rotation
operation (single or double) the subtree to which the rotation is applied has exactly the same
height it did prior to the insertion. It follows that this subtree and all the others in the tree
are properly balanced with respect to the AVL height criteria.

(d) O(log n): In AVL-tree deletion, rotations may propagate from the leaf to the root. Since the
tree has O(log n) height, this bounds the maximum number of rotations.

(e) Skew: The skew operation enforces the right-child constraint. (In contrast, the split operation
is used to enforce the condition that if a node is red, then both its children are black.)

(f) A finger search is one where, rather than starting at the root of the tree, the search starts
from an existing entry in the tree. This might be the last node visited in the previous search.
For example, imagine that you want to look up “house” in a dictionary (book), but just prior
to this you had looked up the word “hose”. Ideally, the search should exploit the fact that
you are already close to the target.

(g) If the second hash function and table size share a common factor, then the probe sequence
may not visit every entry of the table, and hence insertion may fail even when there are
available empty slots in the table. (For example, m = 10, h(x) = 3, and g(x) = 5, the probe
sequence will consist of indices of the form (3 + 5 · i) mod 10 = ⟨3, 8, 3, 8, . . .⟩. If these two
positions are filled, then the insertion fails.)

(h) Hashing does not support ordered dictionary operations. Operations such as finding the
largest, smallest, next-larger/smaller, and range searching are not efficiently supported by
hash tables, but almost all of our tree-based structures support these in O(log n) time.

1

(i) The reason for storing the size2 field is for the purpose of merging blocks together. When
a used block becomes free, it needs to see whether the immediately preceding block is free.
The prevInUse bit tells us whether it is free or not, but if it is we need to find its header.
The size2 field tells us the block’s size, and by offsetting by that amount, we can find the
previous block’s header.

(j) The buddy system has more internal fragmentation: Internal fragmentation refers to the
wastage of memory within (as opposed to between) the allocated blocks. The buddy system
may waste up to half of the allocated block by rounding the size up to the next power of 2.

Solution 2:

(a) Our helper function is printMaxK(Node p, int k), which prints the largest k nodes from the
subtree rooted at p. If k is not positive, we print nothing. The initial call is printMaxK(root,
k). Subtracting the size of the right subtree from k leaves the number of nodes remaining to
be printed. (The remainder may be negative, but if so, nothing is printed.)

Because we invoke the function on left, then this node, then right, the keys will be printed in
ascending order.

void printMaxK(Node p, int k) { // print max k

if (p != null && k > 0) // something to print?

int rightSize = (p.right == null ? 0 : p.right.size) // size of p.right

int remainder = k - rightSize // remainder after p.right

if (remainder > 0)

printMaxK(p.left, remainder - 1) // print left keys

print(p.key) // print this node

printMaxK(p.right, k) // print right keys

}

(b) We assert that the running time is O(k+ log n). To see this, observe that there are two ways
we might visit a node. First, we visit it to print its key. The number of such nodes is k,
and (since we do O(1) work in each node) the time spent visiting all these nodes is O(k).
Otherwise, we visit the node but do not print its contents. This happens when the right
subtree has k or fewer keys. If so, we make a recursive call on its right subtree only. Since
the tree’s height is O(log n), the number of times we can do this is O(log n). So, the total
running time is O(k + log n).

(c) The helper function is called printEvenOdd(Node p, int index), where index indicates the
index of this key in the sequence. We print a key if the index value is odd, and we increment
the index each time we visit a node. We return the updated index after visiting a subtree
(which is a bit sneaky). The initial call is printEvenOdd(root, 1). It easy to see that this
runs in O(n) time.

int printEvenOdd(Node p, int index) {

if (p == null) return index // nothing to print

else

index = printEvenOdd(p.left, index) // print left subtree

2

if (index % 2 == 1) print(p.key) // print current if odd

index += 1

return printEvenOdd(p.right, index) // print the right subtree

}

Solution 3:

(a) Every node stores double field weight, which stores the total weight of all the points in this
cell. The initial call is weightedRange(R, root, bbox). The principal difference over the
standard range counting query is that whenever the cell or point lies within the range, we
add its weight (not just count) to the result.

double weightedRange(Rectangle R, KDNode p, Rectangle cell) {

if (p == null) return 0 // fell out of the tree?

else if (R.isDisjointFrom(cell)) // no overlap with range?

return 0

else if (R.contains(cell)) // the range contains our entire cell?

return p.weight // include the weight of p’s subtree

else { // the range stabs this cell

int result = 0

if (R.contains(p.point)) // consider this point

result += p.point.weight // include p’s point’s weight

// apply recursively to children

result += rangeCount(R, p.left, cell.leftPart(p.cutDim, p.point))

result += rangeCount(R, p.right, cell.rightPart(p.cutDim, p.point))

}

return count

}

(b) The code is structurally equivalent to the standard range-counting query. Thus, it visits
exactly the same nodes as the standard range-counting query. Thus, the O(

√
n) analysis

applies here as well.

Solution 4: The approach follows the standard nearest-neighbor search, but we add the additional
condition that we do not visit nodes whose cell lies outside the disk’s radius, that is, if the distance
between q and the cell exceeds the disk radius r.

The helper is the same as for the standard nearest-neighbor search, but it is also given the disk
radius r. Note that the best point may be null if no point has been found within the query disk.
Otherwise, it contains the closest point seen so far that is within the query disk.

The initial helper call is frnn(q, r, root, bbox, null), where root is the root of the tree,
bbox is the bounding cell for the entire tree, and null is the initial best point. We define the
viability region to be the disk centered at q whose radius is the smaller of r and the best point seen
so far. If we fall out of the tree or our cell is outside the viable region, we return best. Otherwise,
we check the point in this node, and update best appropriately. Finally, we recurse on the children,
favoring the child that is closer to q.

Point frnn(Point q, double r, KDNode p, Rectangle cell, Point best) {

double bestDist = (best == null ? INFINITY : distance(q, best))

3

double viableDist = min(r, bestDist) // distance to be viable

if (p == null || distance(q, cell) >= viableDist) // not viable

return best

if (dist(q, p.point) < viableDist) // p.point is better?

best = p.point // it’s the new best

Rectangle leftCell = cell.leftPart(cd, p.point) // child cells

Rectangle rightCell = cell.rightPart(cd, p.point)

if (q[cd] < p.point[cd]) { // q is closer to left

best = frnn(q, r, p.left, leftCell, best) // try left then right

best = frnn(q, r, p.right, rightCell, best)

} else { // q is closer to right

best = frnn(q, r, p.right, rightCell, best) // try right then left

best = frnn(q, r, p.left, leftCell, best)

}

return best

}

Solution 5: See Fig. 1. The substring identifiers are shown (in suffix order) in the upper left.
They are sorted lexicographically in the lower left. The final suffix tree is shown on the right.

1

0

1

2

3

4

5

6 babab

ababaa

babaa

abaa$

baa$

aa$

8

9

10

11

12

13

Index Substring ID Index Substring ID

ba

ba

4

a ba $7

a$

$

b a a b a a b a b a b a a $Text:
0 1 1311 12108 975 642 3

11

$ a ba

baa

10

$

13

Suffix Tree:

ababab

aabab

aabaa

baabab

baabaa

abaab

0

3

5

6 bababababaa

babaaabaa$

baa$

aa$

89

10

11

12

13

Index Substring ID Index Substring ID

7

a$

$ababab

baabab

baabaa

1 aabaa

4 aabab

2 abaab

a b

2 9

b $

7 5

a b

12

$
a

0 3

a b
8 6

a bba

Figure 1: Suffix tree.

Solution 6:

(a) To answer orthogonal top-k queries, the preprocessing consists of building a 3-layer structure.
The first two layers consist of a standard 2D range tree based on the (x, y)-coordinates of the

4

points. This yields a structure with space O(n log2 n). For each node of this structure, we
create a third layer consisting of a simple list inversely sorted by the ratings.

Given any query region R, we know by standard results on range trees that we can express
the set of all points lying within R as the disjoint union of a collection O(log2 n) subtrees and
these can be computed in O(log2 n) time. For each subtree, we access the auxiliary third-level
structure, sorted on rating to select the k largest elements from each. This yields a total of
O(k log2 n) elements. In the same time, we can extract the k largest elements. (We could also
use the printMaxK function mentioned above, but this yields a slightly worse running time
of O((log2 n)(k + log n)) = O(k log2 n+ log3 n).)

You might wonder whether the third layer is necessary. The problem with trying to solve the
problem with just a two-layer structure (sorted say on x and then y) is that the points within
the auxiliary subtrees are not sorted by rating. A single subtree may contain O(n) elements,
and filtering out the largest k will generally take O(n) time, which will be way too slow.

(b) We break the annulus up into four rectangles, and apply an orthogonal top-k query to each.
This yields up to 4k elements. Among these, we select the largest k, which can be done in
additional O(k) time. The overall space and query time is the same as for 6.1.

You might wonder whether it is possible to apply the trick treating the annulus as a difference
of two squares. That is, we first identify the points lying within the large (radius r2) square
and then filter out the points in the smaller (radius r1) square. While this works for counting,
where we can take differences, it does not work for the k-largest. The problem with this is
that the inner square may contain a huge number of elements (e.g., O(n)), and these are
larger than the elements in the annulus. The time needed to filter these out (processing them
point by point) would be O(n), which is way too slow.

Solution 7: Before presenting the solution, let us make some useful observations. Recall that each
segment has left and right endpoints (x−i , yi) and (x+i , yi) and the query segment has x-coordinate
qx, and the y-coordinates of the lower and upper endpoints are q−y and q+y .

First, in order to intersect the query segment we must have q−y ≤ yi ≤ q+y , that is, the data-set
segment’s y-coordinate must lie between the upper and lower endpoints of the query segment. Next,
x−i ≤ qx, since the left endpoint of the data-set segment must lie to the left of the query segment.
Symmetrically, x+i ≥ qx, since the right endpoint of the data-set segment must lie to the right of
the query segment.

(a) We build a 3-layer range-tree structure, to test each of these conditions. (The order does
not matter, since we are just counting. Note that we cannot just build a single layer for the
x-conditions. This is because there are two independent x values, x−i and x+i and each needs
to be filtered independently against qx.)

Let us treat each horizontal line segment as a point (yi, x
−
i , x

+
i) in R3. Given the above

observations, we can model the query segment as a 3-dimensional range, given by the three
constraints

yi ∈ [q−y , q
+
y], x−i ∈ [−∞, qx], and x+i ∈ [qx,+∞].

This is just a standard 3-dimensional range tree, which has space O(n log2 n). .

5

(b) Queries are answered as they would be for any standard 3-dimensional range tree. We search
the first layer (sorted by yi) to identify a set of O(log n) canonical nodes such that the points
in these subtrees have yi coordinates that define a disjoint cover of [q−y , q

+
y]. Next, for each

node from the first layer, we access the 2nd layer auxiliary trees to identify a set of O(log n)
canonical nodes such that the x−i coordinates of the these points form a disjoint cover of
[−∞, qx]. Finally, for each of the nodes from the 2nd-layer search, we access the 3rd-layer
auxiliary trees to identify a set of O(log n) canonical nodes such that the x+i coordinates of
the these points form a disjoint cover of [qx,+∞]. We sum the sizes of all these subtrees and
return the result as the final answer.

This is just a standard 3-layer range tree search for n points, which has query time is O(log3 n).

Solution 8: We maintain two pointers p (source) and q (destination). When we encounter an
allocated block (p.inUse) we copy this block’s contents to the destination. We set the prevInUse
to 1, since we assume there will be no gaps after compression. We then increment the pointers to
the source and destination by the block size. When we are done, we have one huge block leftover
free block at the end. We set its inUse to 0, its prevInUse to 1, set its block sizes, and we return
a pointer to the head of this block.

(void*) compact(void* start, void* end) { // compact memory from start to end-1

void* p = start; // p points to source block

void* q = start; // q points to destination block

while (p < end) {

if (p.inUse) { // allocated block?

memcpy(q, p, p.size); // copy to destination

q.prevInUse = 1; // previous block is in-use

q += p.size; // increment destination pointer

// (no need to set q.size or q.inUse, since they are copied from p)

}

p += p.size; // advance to the next block

}

// everything copied - now q points to the remaining available block

q.inUse = 0; // this block is available

q.prevInUse = 1; // previous block is in-use

int blockSize = p - q; // size of this final block

q.size = blockSize; // set q.size

*(q + q.size -1) = blockSize; // ... and q.size2

return q; // return pointer to this block

}

Solution 9: This is all an exercise in bit manipulation.

(a) boolean isValid(int k, int x): A block at level k starts at address x if x is a multiple
of 2k, or equivalently its k lowest-order bits are all zero. That is, (bitMask(k) & x) == 0.

(b) int sibling(int k, int x): As given in class, this comes about by complementing the kth
order bit of x (where the least significant bit is bit 0), that is, (1<<k)^x. For example:

sibling(2, 24) = sibling(2, 0110002) = 0001002 ^ 0110002 = 0111002 = 28.

6

which means that blocks 24 and 28 are siblings at level 2. In Fig. 2, we show other examples.
Blocks 0 = 0000002 and 8 = 0001002 are siblings at level 3 since they differ in bit position
3. Blocks 32 = 1000002 and 48 = 1100002 are siblings at level 4 since they differ only in bit
position 4.

0 4 8 12 16 20 24 28 32 36 40 44 48

avail

0

1

2

3

4
32 = 100000

0 = 00000 8 = 01000

48 = 110000

24 = 11000 28 = 11100

50

Figure 2: Buddies and bits.

(c) int parent(int k, int x): To obtain the parent, we zero out the k-order bit, that is,
{~(1<<k) & x. For example:

parent(2, 12) = parent(2, 0011002) = 0001002 & 0011002 = 0010002 = 8.

(d) int left(int k, int x): The left child’s starting address is the same as the parent’s start-
ing address, so this is just x.

(e) int right(int k, int x): The right child’s starting address is the sibling of the left child’s
starting address at level k − 1, that is (1<<(k-1))^x. For example:

right(2, 12) = sibling(1, 12) = 0000102 & 0011002 = 0011102 = 14.

Solution 10:

(a) Worst-case: n+1. In the worst case, the user performs n pushes and erases them all. In this
case the pop operation skips over all n of the erased elements and returns null, for a running
time of n+ 1.

(b) Amortized: 1.5. Before giving the formal proof, here is an intuitive argument. The expensive
operations are skips of erased elements performed during a pop operation. In order to skip an
erased node, it must first be pushed and then erased. If we charge an additional 1

2 token for
each push and erase, we have enough tokens accumulated to pay for each skip of an erased
elements.)

We will employ a standard token-based analysis. We charge 1.5 tokens for each operation.
Each push and erasure takes 1 unit of actual time, and this means that we place half a token
in the bank for each. Whenever a pop comes along, we skip over some number of elements.
In order to skip over an element, it must have been pushed (depositing half a token) and
it must have been erased (deposting half a token), and together, the 1

2 + 1
2 = 1 token pays

for the time needed to skip this one element. We also use one token for the pop of the final
unerased item.

7

Is 1.5 tight? Yes. This can be seen if you push n entries (for a huge value n), erase them all,
and do a single pop. The total number of operations is m = n + n + 1 = 2n + 1. The total
work is n + n + (n + 1) = 3n + 1. Averaging over the m operations, the amortized cost is
(3n+ 1)/m = (3n+ 1)/(2n+ 1). If n is large, this is ≈ 1.5.

(c) Expected: O(m/(m − k)). The probability that any element was erased is k/m. Therefore,
the probability that any accessed element is not erased is p = 1− k/m = (m− k)/m. Basic
probability theory teaches us that if a coin has probability p of coming up heads, then in
expectation, you will need to flip the coin 1/p times before seeing heads. In our case, this
means that we expect to visit 1/p = m/(m− k) entries before finding an unerased entry.

Solution 11:

(a) We will show that the amortized time α = 7/3 = 2.333 Each time we perform an
insertion, we receive α tokens. One of these tokens will be used to pay for the insertion, and
the remaining α− 1 are put in a bank account to pay for the next expansion. Let us assume
that we have just expanded a table of size m resulting in a new table of size m′ = 4m, which
contains 3m/4 entries. In order to induce the next expansion, the total number of entries
must grow to (3/4)m′ = (3/4)(4m) = 3m. This means that the number of new insertions is
at least 3m − (3m/4) = (9/4)m. Through these insertions we have collected (9/4)m(α − 1)
tokens. We need to have enough tokens to pay the expansion cost, which is 3m. Therefore,
α must satisfy:

9m

4
(α− 1) ≥ 3m =⇒ α ≥ 1 +

4

3
=

7

3
,

as desired.

Aside: We can generalize this. Let 0 < λ < 1 denote the load factor when the expansion
is triggered, and let β > 1 denote the expansion factor. Let us assume that we have just
expanded a table of size m resulting in a new table of size m′ = βm, which contains λm
entries. In order to induce the next expansion, the total number of entries must grow to
λm′ = λ(βm). This means that the number of insertions is at least λβm− λm = λ(β − 1)m.
Through these insertions we have collected λ(β−1)m(α−1) tokens. We need to have enough
tokens to pay the expansion cost, which is λβm. Therefore, α must satisfy:

λ(β − 1)m(α− 1) ≥ λβm =⇒ α ≥ 1 +
β

β − 1
=

2β − 1

β − 1
.

(It is interesting that the amortized cost does not depend on λ. When β = 4, this yields
α = 7/3, as expected.)

(b) To decrease the amortized cost, we should increase the expansion factor, since this reduces the
frequency with which expansions take place (but does not increase their cost). This increase
has the negative side effect that we may waste more space if we never fill up the expanded
table. For example, if we expanded the table by a factor of 400 instead of 4, expansions would
be very infrequent, but the final expansion could potentially waste a lot of space.

8

