
CMSC 420: Fall 2022

Solutions to CMSC 420 (0201) - Midterm Exam 2

Solution 1: See Fig. 1

insert("Z") h("Z") = 4

insert("Y") h("Y") = 9

insert("X") h("X") = 3

(a) Quadratic Probing

insert("Z") h("Z") = 5; g("Z") = 2

insert("Y") h("Y") = 5; g("Y") = 4

insert("X") h("X") = 4; g("X") = 6

(b) Double Hashing

0 1 2 3 4 5 6 7 8 9

insert("X")

X

Y

insert("Y")

insert("Z")

Z

3 probes

insert("X")

4 probes

Fails!

A BC DE X

A BC DE X Y

A BC DE X Y

0 1 2 3 4 5 6 7 8 9

A BC DEF

X

X

3 probes

A BC DEF X
Y

Y

4 probes

A BC DEF X Y

insert("Y")

insert("Z")

Z
Fails!

Figure 1: Hashing with open addressing.

Solution 2:

(a) Min: 4, Max: 7 (The minimum is a tree with a root where one subtree is a single node, and
the other is a two-node subtree. The maximum is a complete tree of height two.)

(b) 2-3 trees (it is also used by B-trees, but we have not covered them yet)

(c) n/9: All n contribute to level 0, n/3 are expected to contribute to level 1, and (n/3)/3 = n/9
are expected to contribute to level 2.

(d) 9, 19: For the min, we store two points in each external node. This gives 10 external nodes
and hence 9 internal nodes. For the max, we store one point in each external node for 20
externals and 19 internals. (I will also accept 18 as an answer for the max. The reason is
that if the tree is built using the algorithm given in the programming assignment, and points
are inserted one by one, then at least one bucket must have two points. Thus, there are 19
external nodes and 18 internal nodes.)

(e) Double hashing: The use of the second hash function implies that, even if two keys collide,
they are very unlikely to have the same probe sequences.

(f) The load factor λ is defined to be n/m, that is, the fraction of the table that is utilized.

1

Solution 3: The recursive helper is presented below. The initial call is findUp(x, root). First,
we check whether we fall out of the tree, and if so, we return null. If we find the key x at this
node, we return the key. Otherwise, if x is larger than p.key, we know that the answer cannot
be in the left subtree, so we recurse on the right subtree. (Note that it might not be here either,
but that is okay.) Finally, if x is smaller than p.key, we recurse on the left subtree. If we find the
answer there, we just return it. However, if the answer is not found there (result == null), it
must be that x is strictly larger than every key in our left subtree, and the next larger key in the
tree is the key stored in this node, so we return p.key.

Key findUp(Key x, Node p) {

if (p == null) return null

else if (x == p.key) return p.key

else if (x > p.key) return findUp(x, p.right)

else /* x < p.key */ {

Key result = findUp(x, p.left)

return (result == null ? p.key : result)

}

}

The function makes one recursive call for each level of the tree, so clearly the running time is O(h),
where h is the tree’s height.

Solution 4:

(a) We adapt the kd-tree range searching algorithm. Our helper function int crcHelper(Point

c, double r, KDNode p, Rectangle cell) is given a node p and its cell cell. The initial
call is crcHelper(c, r, root, bbox), where bbox is the bounding box for the entire kd-tree.

The helper is presented below. If we fall out of the tree or the cell is disjoint from the query
range (its min distance from c is greater than r) we return zero. If the node’s cell is completely
contained within the disk (that is, its maximum distance from c is at most r) we return all
the points in this node’s subtree. If neither holds, we check whether this point lies within the
disk (that is, the distance from c to p.point is at most r), and if so we count it. Finally, we
recurse on both children, passing in their corresponding cells.

int crcHelper(Point c, double r, KDNode p, Rectangle cell) {

if (p == null || minDist(c, cell) > r) // trivial cases

return 0

else if (maxDist(c, cell) <= r) // cell contained in disk

return p.size // take all its points

else {

int ct = 0

if (dist(c, p.point) <= r) ct += 1 // consider this point

// apply to children

ct += crcHelper(c, r, p.left, cell.leftPart(p.cutDim, p.point))

ct += crcHelper(c, r, p.right, cell.rightPart(p.cutDim, p.point))

return ct

}

}

(b/c) The worst-case running time is O(n), even if no points lie within the disk. Although the
algorithm is probably quite practical, it is possible to create a scenario where almost all the

2

points lie barely outside the disk, but the disk overlaps all the n leaf cells of the tree (see
Fig. 2). The algorithm needs to visit all of these leaf cells, but no points are reported.

cr

Figure 2: Circular range counting worst case. Every cell in the tree needs to be visited, but none
of the points lies in the circular disk.

Solution 5: The answer is based on a 2-dimensional range tree. There are two approaches.
The first is to sort the primary tree by y-coordinates, then build the auxiliary tree sorted by x-
coordinates, and use findUp to locate the smallest item to the right of the segment. The alternative
is to use the classical ordering (x- then y-), but each node of the auxiliary tree stores its descendant
with the minimum x-coordinate. We will describe the former approach.

(a) The data structure is a two-layer range tree. The primary (first-level) tree stores the points
of P sorted by their y-coordinates. The second-layer auxiliary trees each store points of the
associated primary subtree sorted by their x-coordinates. We assume that the auxiliary trees
support the operation findUp(x), which returns the smallest key in the tree whose value is
greater than or equal to x.

Since this is a standard two-layer range tree, the space is O(n log n).

(b) We answer a query as follows. Let s denote the query segment. We first apply the standard
range search to the primary tree to identify all the nodes u corresponding to the maximal
subtrees lying in the interval [s.ylo, s.yhi]. For each such u, we then access its auxiliary tree
and perform the operation findUp(s.x). This identifies the result of applying the segment
sliding query to this horizontal substrip. We return the overall minimum of these values as
the final answer.

The query visits a total of O(log2 n) nodes (O(log n) from the primary tree, and each of these
spawns an additional O(log n) from its auxiliary tree.) We can collect all the find-up values
and determine their minimum in the same time bound.

Solution 6: In both parts, let us consider what happens during a run that starts with a tree of
size n, and ends when the number of active entries falls below n/2.

(a) To see that find operation takes O(log na), consider any find that takes place during the run.
Thus, we have n/2 ≤ na ≤ n. The original tree was balanced, so (even with all the inactive
nodes clogging things up) any find operation takes time O(log n). Since n/2 ≤ na, it follows
that lg(n/2) ≤ lg na, and since lg(n/2) = (lg n)− 1, we have lg n ≤ (lg na) + 1. Therefore, a
running time of O(log n) is also O(log na), as desired.

3

(b) We assert that the amortized running time of delete is O(log n). To see this, consider the
run. The actual running time of each delete and each find is O(log n). Initially, all the
entries are active, and to reduce the number of active entries below n/2, we need to perform
at least n/2 deletions. If we assess a charge of t = O(log n) tokens for each operation, we use
half of this to pay for the actual cost of the operation, and bank the other half. Thus, we
bank a total of at least t(n/2) = O((n/2) log n) = O(n log n) tokens during the run. Clearly,
we have accumulated enough tokens to pay the O(n) cost to rebuild the tree.

Note that we had quite a bit of excess “slack” in our analysis. We would have collected
enough tokens if we had charged just one token for every delete operation. Unfortunately,
we cannot assert that the amortized running time is O(1), because the amortized time can
never be smaller than the actual time. (After all, it is the average of the actual costs.) The
actual time for each delete and each find is O(log n).

4

