The exam will be in class, this Thursday, Oct 20. It will be closed-book, closed-notes, but you will be allowed one "cheat sheet" of notes, front and back.

So far, we have studied a wide variety of data structures for a diverse set of applications. We have considered the material from both a theoretical and practical perspectives. We have illustrated various aspects of data-structure design and analysis, including worst-case and asymptotic analyses, randomized data structures.

Basic Data Structures: Sequential and linked allocation, amortized analysis, multilists and sparse matrices.

Amortized Analysis: We studied the concept of amortized analysis, where rather than analyzing the running time of each individual operation, we instead consider the total running time for a sequence of operations, and then take the average. This is useful for data structures that are fast most of the time, but occasionally take a long time (e.g., due to expanding or reorganizing themselves).

Trees: Representations of rooted trees, binary trees and traversals, full and extended binary trees, threaded binary trees, complete binary trees (and array allocation).

Disjoint Set Union/Find: This is a tree-based data structure for maintaining a collection of disjoint sets, where the two operations are those of merging two sets (union) and finding the set that contains a given element (find). We showed that a simple version of the data structure supports operations in $O(\log n)$ time. If path compression is used, the total time to perform a sequence of m operations is $O(m \cdot \alpha(m, n))$, thus the amortized time per operation is $O(\alpha(m, n))$. Recall that this is the extremely slow-growing inverse Ackerman’s function, which theoretically grows to infinity, but it does so so slowly that its value is essentially a constant for all practical purposes.

Priority Queues: A priority queue is a data structure that stores elements, each associated with a key, called its priority. At a minimum it supports the operations of insert and extractMin, ideally each in $O(\log n)$ time. The binary heap is the most basic priority queue data structure. Since it is based on a left-complete tree, it can be stored inside an array.

We also discussed leftist heaps, which supports the operation of merging two heaps together. This was done by organizing the tree so that its rightmost path is short, never longer than $O(\log n)$.

Ordered Dictionaries: We studied a wide variety of tree-based data structures for ordered dictionaries. These support the operations of insert, delete, and find, and various ordered extensions of these operations (e.g., find-up, get-min, range queries).

Binary Search Trees: Standard (unbalanced) binary search trees. Good expected-case performance ($O(\log n)$) for random insertions.

AVL Trees: Height-balanced trees. Use of single- and double-rotations to balance the tree. Worst-case time for all dictionary operations is $O(\log n)$.
2-3 Trees: Variable-width nodes with either 2 or 3 children per node. Operations run in $O(\log n)$ worst-case time. This data structure was maintained through three operations, split, merge, and adoption (or key rotation).

Red-Black Trees: Binary encodings of 2-3 and 2-3-4 trees. Operations run in $O(\log n)$ worst-case time. We presented a variant called the AA tree, in which balance is maintained by two operations, split and skew.

Treaps: A randomized binary search tree, which uses random priorities assigned to each node so that the tree structure is equivalent to a binary search tree under random insertions. Keys are sorted according to an inorder traversal, and priorities are heap ordered. The expected running time of dictionary operations is $O(\log n)$, where the expectation is over the random choices.

Skip lists: Another randomized search structure, which is based on linked lists with variable height nodes. Dictionary operations can be performed in $O(\log n)$ expected-case time, where the expectation is over the random choices.

Splay Trees: A self-adjusting data structure, which uses no balance information. Through a complicated potential argument (which we did not present), it can be shown that the amortized running time of dictionary operations is $O(\log n)$. The data structure also has a number of other interesting operations, including static optimality, efficient finger-search, and the working-set properties.