The exam will be in class, this **Thursday, Nov 17**. It will be closed-book, closed-notes, but you will be allowed two “cheat sheets” of notes, front and back.

So far, we have studied a wide variety of data structures for a diverse set of applications. We have considered the material from both a theoretical and practical perspectives. We have illustrated various aspects of data-structure design and analysis, including worst-case and asymptotic analyses, randomized data structures.

From the First Midterm: The exam is cumulative in theory, but the emphasis will be on material from after the midterm. Nonetheless, some questions (perhaps 20%) may be drawn from before the first midterm. Here is a summary:

Basic Data Structures: Sequential and linked allocation, amortized analysis, multilists and sparse matrices.

Amortized Analysis: Rather than analyzing the running time of each individual operation, we instead consider the average running time for a sequence of operations.

Trees: Representations of rooted trees, binary trees and traversals, full and extended binary trees, threaded binary trees, complete binary trees (and array allocation).

Disjoint Set Union/Find: A tree-based data structure for maintaining a collection of disjoint sets, and supports the operations union and find. Very fast amortized running time.

Priority Queues: We studied the binary heap and the leftist heap.

Ordered Dictionaries: Support the operations of insert, delete, and find, and various ordered extensions of these operations (e.g., find-up, get-min, range queries).

Binary Search Trees: Standard (unbalanced) binary search trees. Good expected-case performance ($O(\log n)$) for random insertions.

AVL Trees: Height-balanced trees. All dictionary operations in $O(\log n)$ time (worst case).

2-3 Trees: Variable-width nodes. Also $O(\log n)$ worst-case time.

Red-Black and AA Trees: Binary encodings of 2-3 and 2-3-4 trees. Also $O(\log n)$ worst-case time.

Treaps: Randomized binary search tree. $O(\log n)$ expected-case time (over random choices).

Skip lists: Based on generalizing linked lists. Also $O(\log n)$ expected-case time (over random choices).

Splay Trees: A self-adjusting data structure. Good amortized performance for many operations.

Quad- and kd-Trees: Partition trees for geometric point data based on axis parallel cuts. We studied operations on kd-trees in detail.

Insertion: (Unbalanced) insertion leads to $O(\log n)$ height in expectation if insertion order is random.
Deletion: Similar to binary-tree deletion, but using a complex process for finding replacement nodes.

Orthogonal range queries: Counting queries can be answered in $O(\sqrt{n})$ time in \mathbb{R}^2 and generally $O(n^{1-1/d})$ in dimension d. Reporting queries can be answered as well, adding an additional term to account for the number of points reported (e.g., $O(\sqrt{n} + k)$).

Nearest-Neighbor Queries: Using a node’s cell to restrict which nodes need to be visited. (Not theoretically efficient, but practically efficient.)

Range Trees: Layered data structure based. Each layer constrains one additional condition on the keys. Can be used to answer many varieties of orthogonal range queries in \mathbb{R}^d. For counting, the query time is $O(\log^d n)$ and space is $O(n \log^{d-1} n)$. Can be adapted to a variety of queries through geometric transformations.

Hashing: Unordered dictionary, which works by scattering keys in a pseudo-random manner. Collision resolution is used to deal with instances of keys that hash to the same location. We studied linear probing, quadratic probing, and double hashing.