Data structures are **FUNDAMENTAL!**
- All fields of CS involve storing, retrieving and processing data
- Information retrieval
- Geographic Inf. Systems
- Machine Learning
- Text/String processing
- Computer graphics

Course Overview:
- Fundamental data structures + algorithms
- Mathematical techniques for analyzing them
- Implementation

Common:
- \(O(1) \): constant time
 - [Hash map]
- \(O(\log n) \): log time (very good!)
 - [Binary search]
- \(O(n^p) \): \(p = \text{constant} \)
 - Poly time
 - eq. \(O(n^3) \)

Asymptotic: “Big-O”
- Ignore constants
- Focus on large \(n \)

\[T(n) = 34n^2 + 15n \log n + 143 \]
\[T(n) = \Theta(n^2) \]

Asymptotic Analysis:
- Run time as a function of \(n \) = no. of items
- Worst-case, average-case, randomized
- Amortized: Average over a series of ops.

Introduction to Data Structures
- Elements of data structures
- Our approach
- Short review of asymptotics

Basic elements in study of data structures
- Modeling: How real-world objects are encoded
- Operations: Allowed functions to access + modify structure
- Representation: Mapping to memory
- Algorithms: How are ops. performed?

Our approach:
- Theoretical: Algorithms + Asymptotic Analysis
- Practical: Implementation + practical efficiency