Linear List ADT:
Stores a sequence of elements \(\langle a_1, a_2, \ldots, a_n \rangle \). Operations:
- \(\text{init}() \): create an empty list
- \(\text{get}(i) \): returns \(a_i \)
- \(\text{set}(i, x) \): sets \(i \)th element to \(x \)
- \(\text{insert}(i, x) \): inserts \(x \) prior to \(i \)th
 (moving others back)
- \(\text{delete}(i) \): deletes \(i \)th item
 (moving others up)
- \(\text{length}() \): returns num. of items

Implementations:
- Sequential: Store items in an array
- Linked allocation: linked list
 - Singly: \(\text{head} \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \rightarrow \text{null} \)
 - Doubly: \(\text{head} \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \rightarrow \text{null} \)

Performance varies with implementation

Abstract Data Type (ADT)
- Abstracts the functional elements of a data structure
 (math) from its implementation
 (algorithm/programming)

Doubling Re-allocation:
When array of size \(n \) overflows
- allocate new array size \(2n \)
- copy old to new
- remove old array

Basic Data Structures I
- ADTs
- Lists, Stacks, Queues
- Sequential Allocation

Dynamic Lists + Sequential Allocation: What to do when your array runs out of space?
- Deque ("deck"): Can insert or delete from either end

Stack: All access from one side
- \(\text{push} \) + \(\text{pop} \) (LIFO)
- \(\text{null} \)

Queue: FIFO list: \(\text{enqueue} \) inserts at tail and \(\text{dequeue} \) deletes from head
Cost model (Actual cost)
Cheap: No reallocation → 1 unit
Expensive: Array of size \(n \) is reallocated to size \(2n \)

Dynamic (Sequential) Allocation
- When we overflow, double
 Eg. Stack
 \[
 \begin{array}{c}
 \text{Top} \\
 \text{9} \xrightarrow{+11} \text{3} \\
 \text{7} \xrightarrow{+23!} \text{11} \\
 \text{23} \\
 \end{array}
 \]

Basic Data Structures II
- Amortized analysis of dynamic stack

Amortized Cost: Starting from an empty structure, suppose that any sequence of \(m \) ops takes time \(T(m) \). The amortized cost is \(T(m)/m \).

Thm: Starting from an empty stack, the amortized cost of our stack operations is at most 5. [i.e. any seq. of \(m \) ops has cost \(\leq 5m \)]

Charging Argument:
- Each request of push/pop we charge user 5 work tokens
- We use 1 token to pay for the operation + put other 4 in bank account.
- Will show there is enough in bank account to pay actual costs.
Fixed Increment: Increase by a fixed constant
\(n \rightarrow n + 100 \)

Fixed factor: Increase by a fixed constant factor (not nec. 2)
\(n \rightarrow 5 \cdot n \)

Squared: Square the size (or some other power)
\(n \rightarrow n^2 \) or \(n \rightarrow n^{1.57} \)

Which of these provide \(O(1) \) amortized cost per operation?

Dynamic Stack:
- Showed doubling \(\Rightarrow \) Amortized \(\mathcal{O}(1) \)
- Other strategies?

Basic Data Structures III
- Dynamic Stack: Wrap-up
- Multilists & Sparse Matrices

Multilists: Lists of lists

Sparse Matrices:
An \(n \times m \) matrix has \(n \cdot m \) entries and takes (naively) \(\mathcal{O}(n \cdot m) \) space

Sparse matrix: Most entries are zero
Announcements: 9/1

Prog Assign 0 - Almost done
→ Rules - Can't use ArrayList
→ Challenge → 1 loop → Realloc
↓
Extra credit → No loops