Dictionary operations:

- **Find**: straight forward
- **Insert**: find leaf node where key “belongs” + add it (may split)
- **Delete**: find/replacement/merge or adopt

Implementation:

```java
class TwoThreeNode {
  int nChildren;
  int[] children;
  Key key[];
}
```

Example:

Insertion example:

- `insert(6)`

```
        4
       /|
      2 8
     /  |
    1 3 12
   /    |
  5 7 9 14
```

Delete Example:

- `delete(5)`

```
        4:8
       /|
      2 6
     /  |
    1 3 10
```

Deletion remedy:

- Have a 3-node neighboring sibling → adopt
- O.w.: Merge with either sibling + steal key from parent

2-3 Trees II
AVL Height Balance

For each node v, the heights of its subtrees differ by at most 1.

AVL Tree A binary search tree that satisfies this condition.

AVL Trees I
- Basic defs
- Height props
- Rotations

Theorem: An AVL tree of height h has at least F_{h+3} nodes, where F_n is the nth Fibonacci number.

Proof: (Induct. on h)

- $h = 0$: $n(h) = 1 = F_3 - 1$
- $h = 1$: $n(h) = 2 = F_4 - 1$

$n(h) = \sum_{i=0}^{h-1} n(i) + n(h-1) + n(h-2)$

Corollary: An AVL tree with n nodes has height $O(\log n)$.

Proof: Fact: $F_n \approx \varphi^n / \sqrt{5}$ where $\varphi = (1 + \sqrt{5}) / 2$ (Golden ratio).

$n \geq F_{h+3} = c \cdot \varphi^h \Rightarrow h \leq \log \varphi n + c$

$\Rightarrow h \leq \log \varphi n / \log \varphi = O(\log n)$

I. H. $\Rightarrow n(h) = \sum_{i=0}^{h-1} (F_{i+3})^2 = F_{h+3}^2$
AVL Trees II

double rotations: left-right LR

right-left RL

AVLNode rebalance (AVLNode p)

if (p == null) return p

if (balanceFactor(p) < -1)
 if (height(p.left.left) >= height(p.left.right))
 p = rotateRight(p)
 else p = rotateLeftRight(p)

else if (balanceFactor(p) > 1)
 if (height(p.right.right) >= height(p.right.left))
 p = rotateLeft(p)
 else p = rotateRightLeft(p)

updateHeight(p); return p

AVLNode insert (Key x, Value v, AVLNode p)

if (p == null) p = new AVLNode(x, v)
else if (x < p.key) p.left = insert(x, v, p.left)
else if (x > p.key) p.right = insert(x, v, p.right)
else throw Error - Duplicate!

return rebalance(p)

AVL Tree:

AVL Node: Same as BSTNode (from Lect 4) but add: int height

Utilities:

int height (AVLNode p)
return { p == null → -1
 ow. → p.height
 }

void updateHeight (AVLNode p)
 p.height = 1 + max (height(p.left),
 height(p.right))

int balanceFactor (AVLNode p)
 return height(p.right) -
 height(p.left)

BSTNode rotate LeftRight (BSTNode p)
 p.left = rotateLeft (p.left)
 return rotateRight (p)

Find: Same as BST.
Insert: Same as BST but as we "back out" rebalance

How to rebalance? Bal = -2

Left-left heavy:

Left-right heavy:

Double rotations:
left-right LR
Cases:
- Balance factor -2
 - Left-left heavy
 - Left-right heavy

Deletion: Basic plan
- Apply standard BST deletion
- Find key to delete
- Find replacement node
- Copy contents
- Delete replacement
- Rebalance

Example 4:
- Delete(7)

Example 3:
- Delete(7)

AVL Trees III
- Deletion
- Examples

AVLNode delete(Key x, AVLNode p)
: same as BST delete
: return rebalance(p)

Examples:
- Insert(5)
- Insert(3)
Node types:
- **2-node:**
 - 1 key
 - 2 children

- **3-node:**
 - 2 keys
 - 3 children

- **AVL:**
 - Height balanced
 - Binary

- **2-3 tree:**
 - Height exact

Recap:
- **Identical heights:** D-tree
- **Variable width:** Red-black

Def: A 2-3 tree of height h is either:
- Empty ($h=-1$)
- A 2-node root and two subtrees, each 2-3 tree of height $h-1$
- A 3-node root and three subtrees... height $h-1$

Thm: A 2-3 tree of n nodes has height $O(\log n)$
Roughly: $\log_3 n \leq h \leq \log_2 n$

Conceptual tool:
- We'll allow 1-nodes
- 4-nodes temporary

How to maintain balance?
- **Split**
- **Merge**
- **Adoption (key rotation)**

Example:
- 2-3 tree of height 2

Adoption (key rotation):
- $2 + 2 = 4$

Merge:
- $1 + 2 / 2 + 1 \rightarrow 3$

Split:
- $4 \rightarrow 2 + 2$

Example:
- Conceptual tool: 2-node

Example:
- 3-node root and two subtrees, each 2-3 tree of height $h-1$
Announcements - 9/27
- HW1: Due this Thu, 11:59 pm
 - don't wait until last second
 - do a practice scan/submit
 - may deduct pts for poor contrast

- Exam dates:
 Midterm 1: Thu, Oct 20 - 1
 Midterm 2: Thu, Nov 17 - 1
 - In class
 - Closed book/closed notes
 - Allowed "cheat sheet" - front + back

- Prog Assignment 1: Leftist Heap
 - insert, extract-min, merge,...
 - new: split
 - new: split
 - 10/80 pts
 - 137

- 19
- 26
- 42
- 48
- 67
- 94

\[h_1 = h_2 \text{split}(x) \]
\[h_2 = \text{merge}(v, u) \]
\[v = \text{merge}(v, u) \]
\[h_1 = \text{merge}(v, u) \]
\[v_1 = \text{merge}(v, u) \]
\[h_2 = \text{merge}(v, u) \]
\[h_1 = \text{merge}(v, u) \]
\[h_2 = \text{merge}(v, u) \]
\[h_1 = \text{merge}(v, u) \]
\[h_2 = \text{merge}(v, u) \]
\[h_1 = \text{merge}(v, u) \]
\[h_2 = \text{merge}(v, u) \]