CMSC /714
Lecture 3

Message Passing with
MPI

Alan Sussman

Notes

* To access papers in ACM or IEEE digital library,
must come from a UMD IP address

* Login info for zaratan cluster will be provided
Thursday, used for all assignments

* First assignment (MPI) announced by end of this
week or early next week

* Check Readings page to see when you are assigned
to send questions for a lecture

e Starts for next week’s lectures
* 3-4 questions on average, more is OK
* by 6PM day before lecture

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

Distributed memory architecture

* Each processor/core only has access to its local
memory

* Writes in one processor’s memory have no effect on
another processor’s memory

Bus Interconnect

Non-uniform Memory Access (NUMA) Distributed memory

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 3

Distributed memory programming
models

* Each process only has access to its own local
memory / address space

* When it needs data from remote processes, it has
to send messages

Process 0
Process | '\
Process 2 /l '

Process 3 '

Time

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 4

Message passing

* Parallel programming model

* Parallelism is achieved by making calls to a library and the
execution model depends on the library used.

* Parallel runtime system:
* Implements the parallel execution model

* A parallel message passing program consists of
independent processes
* Processes created by a launch/run script

* Each process runs the same executable, but
potentially different parts of the program

e Often used for SPMD style of programming

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

M PI

* Goals:
» Standardize previous message passing:
« PVM, P4, NX (Intel), MPL (IBM), ...
» Support copy-free message passing
* Portable to many platforms — defines an API, not an
implementation
* Features:
* point-to-point messaging
* group/collective communications
* profiling interface: every function has a name-shifted version

 Buffering (in standard mode)
* no guarantee that there are buffers
* possible that send will block until receive is called

* Delivery Order
* two sends from same process to same dest. will arrive in order
* no guarantee of fairness between processes on receive

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

Hello World in MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int rank, size;
MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &rank)
MPI Comm size(MPI COMM WORLD, &size)
printf("Hello world! I'm %d of %d\n", rank, size);

°
4
°
4

MPI Finalize();
return 0;

Compiling and running an MPI program

* Compiling:
mpicc -0 hello hello.c
* Running:

mpirun -n 2 ./hello

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 8

Process creation / destruction

*int MPI Init(int argc, char
**argv)
* Initialize the MPI execution environment

*int MPI Finalize(void)
* Terminates MPI execution environment

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

MPI|I Communicators

* Provide a named set of processes for communication
* plus a context — system allocated unique tag

* All processes within a communicator can be named
e a communicator is a group of processes and a context
* numbered from 0...n-1

* Allows libraries to be constructed
 application creates communicators
* library uses it

* prevents problems with posting wildcard receives
* adds a communicator scope to each receive

* All programs start with MPI_COMM_WORLD

* Functions for creating communicators from other
communicators (split, duplicate, etc.)

* Functions for finding out about processes within
communicator (size, my_rank, ...)

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 10

Process identification

*int MPI Comm size(MPI Comm comm,
int *size)
* Determines the size of the group associated with a
communicator

*int MPI Comm rank(MPI Comm comm,
int *rank)

* Determines the rank (ID) of the calling process in the
communicator

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 11

Send a message

int MPI Send(const void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)

buf: address of send buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

tag: message tag

comm: communicator

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

12

Receive a message

int MPI Recv(void *buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm, MPI Status *status)

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer
datatype: datatype of each receive buffer element
source: rank of source process

tag: message tag

comm: communicator

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 13

Simple send/receive in MPI

int main(int argc, char *argv)
MPI Comm rank(MPI COMM WORLD,

MPI Comm size(MPI COMM WORLD,

int data;
if (rank ==
data = 7;
MPI Send(&data,
} else if (rank
MPI Recv(&data,
MPI STATUS IGNORE);

0) {

1, MPI_INT,

1) {
1, MPI_INT,

printf("Process 1 received data %d from process 0\n"

data);
}

&rank);
&size);

1, 0, MPI COMM WORLD) ;

0, 0, MPI COMM WORLD,

Basic MPI Send and MPI Recv

* MPI_Send and MPI_Recv routines are blocking

* Only return when the buffer specified in the call can be
used

e Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recv is available in the
buffer

Process 0 . ' ' MPI_Send
Deadlock!

Process | ' ‘ ' MPL Recy

Time —

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

15

Non-Blocking Point-to-point Functions

* Two Parts
* post the operation
e wait for results

* Also includes a poll/test option
* checks if the operation has finished

e Semantics

* must not alter buffer while operation is pending (wait
returns or test returns true)

* and data not valid for a receive until operation completes

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 16

Collective Communication

e Communicator specifies process group to
participate

*\arious operations, that may be optimized in an
MPI implementation
* Barrier synchronization
* Broadcast
» Gather/scatter (with one destination, or all in group)

* Reduction operations — predefined and user-defined
* Also with one destination or all in group

* Scan — prefix reductions

* Collective operations may or may not synchronize

* Up to the implementation, so application can’t make
assumptions

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

17

MPI Calls

*Include <mpi.h> in your C/C++ program

* First call MPI_Init(&argc, &argv)
* MPI_Wtime()

* Returns wall time

* At the end, call MPI_Finalize()
* No MPI calls allowed after this

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

18

MPI|I Communication

* Parameters of various calls (in later example)
 var — a variable (pointer to memory)
* num — number of elements in the variable to use
* type {MPI_INT, MPI_REAL, MPI_BYTE, ...}
* root — rank of process at root of collective operation
* src/dest — rank of source/destination process
e status - variable of type MPI_Status;

* Calls (all return a code — check for MPI Success)

 MPI_Send(var, num, type, dest, tag,
MPI_COMM_WORLD)

* MPI_Recv(var, num, type, src, MPI_ANY_TAG,
MPI_COMM_WORLD, &status)

 MPI_Bcast(var, num, type, root, MPI_COMM_WORLD)
 MPI_Barrier(MPI_COMM_WORLD)

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 19

MPI datatypes

* All messages are typed

* base/primitive types are pre-defined:
* int, double, real, {unsigned}{short, char, long}
« MPI_INT, MPI_DOUBLE, MPI_CHAR, ...

* Derived or user-defined datatypes:
* Array of elements of another datatype

* struct data type to accommodate sending multiple
datatypes

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele

20

MPI| Misc.

* Processor Topologies
* Allows construction of Cartesian & arbitrary graphs

* May make it easier to map processes to processors/nodes
for some communication patterns

* May allow some systems to run faster
* Language bindings for C, Fortran, C++, ...

* What else is in current versions of MPI

* Dynamic process creation
* Parallel I/0 — MPI-IO
e One-sided communication

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 21

Sample MPI Program

#include “mpi.h”
/* Now start passing the message back and forth */

for (i=0 ; i<ITERATIONS ; i++) {
if (myrank==0) {
MPI_Send(message, MESSAGESIZE,
MPI_CHAR, friendRank, tag,

int main(int argc, char **argv) {
int myrank, friendRank;
char message[MESSAGESIZE];
int i, tag=MSG_TAG;

MPI_Status status; MP|_COMM_WORLD);
MPI_Recv(message, MESSAGESIZE,
/* Initialize, no spawning necessary */ MPI_CHAR, friendRank, tag,
MPI_Init(&argc, &argv); MPI_COMM_WORLD, &status);
MPI1_Comm_rank(MPI_COMM_WORLD,&myrank); }

else {

MPI_Recv(message, MESSAGESIZE,
MPI_CHAR, friendRank, tag,

if (myrank==0) {/* | am the first process */
friendRank = 1;

} MPI_COMM_WORLD, &status);
else { /I am the second process ™/ MPI_Send(message, MESSAGESIZE,
friendRank=0; MPI_CHAR, friendRank, tag,
} MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD); }
if (myrank==0) { }
/* Initialize the message */ MPI_Finalize();
for (i=0 ; i<KMESSAGESIZE ; i++) { exit(0);
messagel[i]='1" }
) CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 22

For more details

e https://www.mpi-forum.org

* includes 4.1 documentation (API), but goes all the way
back to 1.0

* 5.0 under development

* books from MIT Press include Using MPI and MPI: The
Complete Reference

* multiple public domain implementations available

* mpich2 — Argonne National Lab and open source team —
https://www.mpich.org/

* OpenMPI - large open source team — https://www.open-mpi.org

* MVAPICH - high performance implementation from OSU -
https://mvapich.cse.ohio-state.edu/

* vendor implementations available too (Intel, IBM, Cray,

)

 for zaratan cluster info, see
https://hpcc.umd.edu/hpcc/help/usage.html

CMSC714 - F22 - Alan Sussman and Abhinav Bhatele 23

http://www.mpi-forum.org/
https://www.mpi-forum.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://mvapich.cse.ohio-state.edu/
https://hpcc.umd.edu/hpcc/help/usage.html

