
CMSC 714
Lecture 5

UPC and OpenACC

Alan Sussman

Notes

•MPI project due 2 weeks from yesterday, Sept. 26
• any questions about project spec, or running on zaratan

cluster?
•Readings posted through next week
•Don't forget to send questions for readings
• additional readings posted for next week, with who

should send questions

CMSC 714 - Alan Sussman 2

UPC

•Extension to C for parallel computing
• a Partitioned Global Address Space (PGAS) language
• others include Titanium (Java), Co-Array Fortran (part of

the current Fortran standard), and Chapel (from Cray)
•Target Environment
• Distributed memory machines
• Cache Coherent multi-processors (so multi-core

processors)
•Features
• Explicit control of data distribution
• Includes parallel for statement

CMSC 714 - Alan Sussman 3

UPC
• Characteristics
• Local memory, shared arrays accessed by global pointers
• Parallelism : single program on multiple nodes (SPMD)
• Provides illusion of shared one-dimensional arrays
• Features
• Data distribution declarations for arrays
• Cast global pointers to local pointers for efficiency
• One-sided communication routines (memput / memget)

• Compilers translate global pointers, generate
communication

•Example

CMSC 714 - Alan Sussman

shared int *x, *y, z[100];

upc_forall (i = 0; i < 100; i++) { z[i] = *x++ * *y++; }

4

UPC Execution Model

•SPMD-based
• One thread per process
• Each thread starts with same entry to main

•Different consistency models possible
• “strict” model is based on sequential consistency
• “relaxed” based on release consistency

CMSC 714 - Alan Sussman 5

Forall Loop

•Forms basis of parallelism
•Add fourth parameter to for loop, “affinity”
•Where code is executed is based on “affinity”

• Lacks explicit barrier before/after execution
• Differs from OpenMP

•Supports nested forall loops

CMSC 714 - Alan Sussman 6

Split-phase Barriers
•Traditional Barriers
• Once enter barrier, busy-wait until all threads arrive

•Split-phase
• Announce intention to enter barrier (upc_notify)
• Perform some local operations
•Wait for other threads (upc_wait)

•Advantage
• Allows work while waiting for processes to arrive

•Disadvantage
•Must find work to do
• Takes time to communicate both notify and wait

CMSC 714 - Alan Sussman 7

Additional info

• Implementations available at https://upc.lbl.gov/
• And lots of other documentation and research

•Another active PGAS language is Chapel, from
Cray/HPE
• C-style too, but a new language with some new ideas and

constructs, and an ongoing community project led by Cray
•More info at https://chapel-lang.org/

CMSC 714 - Alan Sussman 8

https://upc.lbl.gov/
https://chapel-lang.org/

OpenACC

CMSC 714 - Alan Sussman 9

Overview

• Like OpenMP, a set of directives to specify code and
data to offload to an accelerator (typically a GPU)
• for Fortran, C, C++

•Compiler then does a lot of the grunt work to run
code on the accelerator with help from the host
• initialize the device and its runtime environment
• allocate data on the device
•move data from host memory to device memory, or

initialize it on device memory
• launch one or more computational kernels on the device
• gather results from device memory back to host memory
• deallocate data on device

CMSC 714 - Alan Sussman 10

Programming model

•What to parallelize
• an outer fully parallel loop (or loop nest, over a multi-

dimensional domain), called gangs in OpenACC
• no synchronization between threads in different gangs

• and an inner synchronous (SIMD/vector) loop level (also
can be multi-dimensional, so a loop nest)
• explicit synchronization supported at this level

•On an NVIDIA GPU, each gang maps to one
streaming multiprocessor (as for a CUDA thread
block)
• and the inner loops map to threads within a gang

executed as a group on the cores in one streaming
multiprocessor

CMSC 714 - Alan Sussman 11

OpenACC Constructs/Directives
•Data construct
• defines a code region where data (arrays, subarrays, scalars)

should be allocated on the device
• with clauses to decide whether data is copied to/from host

memory or just allocated on device
• similar directives to have such info scoped across function

calls, and to synchronize with the host while executing on the
device

• Kernels construct
• specifies a code region to be compiled into one or more

accelerator kernels, executed in sequence
• can take data clauses to also specify the data to allocate on

the device for the kernels
• loop construct inside a kernels construct says what type of

parallelism to use to execute a loop (i.e. gangs/vectors)

CMSC 714 - Alan Sussman 12

OpenACC Constructs (cont.)

•Parallel construct
• For more explicit user-specified parallelism
• immediately starts the requested number of gangs, with

the specified number of worker threads
• then, like OpenMP parallel construct, all workers (as a set of

threads) in a gang execute the code in the parallel construct, until
they reach a loop construct, where each worker then executes a
subset of the loop iterations

• kernels construct gives compiler (or programmer) more
flexibility in scheduling loops and decomposing iterations
across gangs/workers

CMSC 714 - Alan Sussman 13

Summary

•For more info on OpenACC, see www.openacc.org
•Current version is 3.2, from November 2021
•Compilers available from PGI (now part of NVIDIA),

Cray/HPE, AMD, several open source from
universities/DOE labs/etc.
• And the philosophy lives on in recent versions of OpenMP

with accelerator directives

CMSC 714 - Alan Sussman 14

http://www.openacc.org/

