CMSC 714
Lecture 5
UPC and OpenACC

Alan Sussman



Notes

* MPI project due 2 weeks from yesterday, Sept. 26

* any questions about project spec, or running on zaratan
cluster?

* Readings posted through next week

*Don't forget to send questions for readings

 additional readings posted for next week, with who
should send questions

CMSC 714 - Alan Sussman



UPC

* Extension to C for parallel computing
* a Partitioned Global Address Space (PGAS) language
 others include Titanium (Java), Co-Array Fortran (part of
the current Fortran standard), and Chapel (from Cray)
* Target Environment
* Distributed memory machines
e Cache Coherent multi-processors (so multi-core
processors)
* Features
* Explicit control of data distribution
* Includes parallel for statement

CMSC 714 - Alan Sussman



UPC

* Characteristics
* Local memory, shared arrays accessed by global pointers
* Parallelism : single program on multiple nodes (SPMD)
* Provides illusion of shared one-dimensional arrays

* Features
* Data distribution declarations for arrays
 Cast global pointers to local pointers for efficiency
* One-sided communication routines (memput / memget)

* Compilers translate global pointers, generate
communication

* Example
shared int *x, *y, z[100];

upc_forall (i=0; i <100; i++) { Z[i] = *x++ * *y++; }

CMSC 714 - Alan Sussman



UPC Execution Model

e SPMD-based

* One thread per process
* Each thread starts with same entry to main

* Different consistency models possible
* “strict” model is based on sequential consistency
* “relaxed” based on release consistency

CMSC 714 - Alan Sussman



Forall Loop

* Forms basis of parallelism

* Add fourth parameter to for loop, “affinity”
* Where code is executed is based on “affinity”

* Lacks explicit barrier before/after execution
* Differs from OpenMP

* Supports nested forall loops

CMSC 714 - Alan Sussman



Split-phase Barriers

* Traditional Barriers
* Once enter barrier, busy-wait until all threads arrive

* Split-phase
* Announce intention to enter barrier (upc_notify)
* Perform some local operations
» Wait for other threads (upc_wait)

* Advantage
* Allows work while waiting for processes to arrive

* Disadvantage
* Must find work to do
* Takes time to communicate both notify and wait

CMSC 714 - Alan Sussman



Additional info

* Implementations available at https://upc.lbl.gov/
 And lots of other documentation and research

* Another active PGAS language is Chapel, from
Cray/HPE

* C-style too, but a new language with some new ideas and
constructs, and an ongoing community project led by Cray

* More info at https://chapel-lang.org/

CMSC 714 - Alan Sussman 8


https://upc.lbl.gov/
https://chapel-lang.org/

OpenACC



Overview

* Like OpenMP, a set of directives to specify code and
data to offload to an accelerator (typically a GPU)
e for Fortran, C, C++

* Compiler then does a lot of the grunt work to run
code on the accelerator with help from the host
* initialize the device and its runtime environment
e allocate data on the device

* move data from host memory to device memory, or
initialize it on device memory

* launch one or more computational kernels on the device
e gather results from device memory back to host memory
 deallocate data on device

CMSC 714 - Alan Sussman

10



Programming model

* What to parallelize

e an outer fully parallel loop (or loop nest, over a multi-
dimensional domain), called gangs in OpenACC
* no synchronization between threads in different gangs

* and an inner synchronous (SIMD/vector) loop level (also
can be multi-dimensional, so a loop nest)

 explicit synchronization supported at this level

*On an NVIDIA GPU, each gang maps to one
streaming multiprocessor (as for a CUDA thread
block)

* and the inner loops map to threads within a gang
executed as a group on the cores in one streaming
multiprocessor

CMSC 714 - Alan Sussman 11



OpenACC Constructs/Directives

* Data construct

 defines a code region where data (arrays, subarrays, scalars)
should be allocated on the device

 with clauses to decide whether data is copied to/from host
memory or just allocated on device

* similar directives to have such info scoped across function
calls, and to synchronize with the host while executing on the
device

e Kernels construct

* specifies a code region to be compiled into one or more
accelerator kernels, executed in sequence

 can take data clauses to also specify the data to allocate on
the device for the kernels

* loop construct inside a kernels construct says what type of
parallelism to use to execute a loop (i.e. gangs/vectors)



OpenACC Constructs (cont.)

* Parallel construct
* For more explicit user-specified parallelism

* immediately starts the requested number of gangs, with
the specified number of worker threads

* then, like OpenMP parallel construct, all workers (as a set of
threads) in a gang execute the code in the parallel construct, until
they reach a loop construct, where each worker then executes a
subset of the loop iterations

 kernels construct gives compiler (or programmer) more

flexibility in scheduling loops and decomposing iterations
across gangs/workers



Summary

* For more info on OpenACC, see www.openacc.org

e Current version is 3.2, from November 2021

e Compilers available from PGI (now part of NVIDIA),
Cray/HPE, AMD, several open source from
universities/DOE labs/etc.

* And the philosophy lives on in recent versions of OpenMP
with accelerator directives

CMSC 714 - Alan Sussman 14


http://www.openacc.org/

