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Notes

•MPI project due Monday, 6PM
• Questions on project?
• I will try to do grading within a week

•OpenMP project will be posted on the same day, 
and due 2 weeks later
• Questions on OpenMP from lecture?

•More readings posted soon
• Don’t forget to send questions when you are assigned
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OpenMP + MPI
•Some applications can take advantage of both 

message passing and threads
• Questions is what to do to obtain best overall 

performance, without too much programming difficulty
• Choices are all MPI, all OpenMP, or both
• For both, common option is outer loop parallelized with message 

passing, inner loop with directives to generate threads

•Applications studied:
• Hydrology – CGWAVE
• Computational chemistry – GAMESS
• Linear algebra – matrix multiplication and QR 

factorization
• Seismic processing – SPECseis95
• Computational fluid dynamics – TLNS3D
• Computational physics - CRETIN
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Types of parallelism in the codes

• For message passing parallelism (MPI)
• Parametric – coarse-grained outer loop, essentially task parallel
• Structured domains – domain decomposition with local 

operations – structured and unstructured grids
• Direct solvers – linear algebra, lots of communication and load 

balancing required – message passing works well for large 
systems of equations

• Shared memory parallelism (OpenMP)
• Statically scheduled parallel loops – one large, or several 

smaller loops, non-nested parallel
• Parallel regions – merge loops into one parallel region to 

reduce overhead of directives
• Dynamic load balanced – when static scheduling leads to load 

imbalance from irregular task sizes
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CGWAVE
• Finite elements - MPI parameter space evaluation at outer loop, 

OpenMP sparse linear equation solver in inner loops
• Speedup using 2 levels of parallelism allows modeling larger bodies of 

water in a reasonable amount of time
• Boss-worker strategy for dynamic load balancing in MPI part/component
• Solver for each component solves large sparse linear system with 

OpenMP to parallelize
• On SGI Origin 2000 (distributed shared memory machine), use first touch 

rule to migrate data for each component  to the processor that uses it
• Performance results show that best performance obtained using both 

MPI and OpenMP, with a combination of MPI workers and OpenMP 
threads that depends on the problem/grid size
• And for load balancing, a lot fewer MPI workers than components
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GAMESS
•Computational chemistry – molecular dynamics –

MPI across cluster, OpenMP within each node
•Built on top of Global Arrays package – for 

distributed array operations
•Which in turn uses MPI (paper says PVM) and OpenMP

• Linear algebra solvers mainly use OpenMP for 
dynamic scheduling and load balancing
•MPI versions of parts of code are complex, but can 

provide higher performance for large problems
•Performance results on “medium” sized problem 

from SPEC (Standard Performance Evaluation 
Corp.) are for a small system (4 8-processor Alpha 
machines) connected by Memory Channel
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Linear algebra

•Hybrid parallelism with MPI for scalability and OpenMP 
for load balancing, for MM and QR factorization
•On IBM SP system with multiple 4-processor nodes
• Studies tradeoffs of hybrid approach for linear algebra 

algorithms vs. only using MPI (running 4 MPI processes 
per node)
•Use OpenMP for load balancing and decreasing 

communication costs within a node
•Also helps to hide communication latency behind other 

operations – important for overall performance
•QR factorization results on “medium” sized matrices 

show that adaptive load balancing is better than 
dynamic loop scheduling within a node
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SPECseis95

• For gas and oil exploration
• Uses FFTs and finite-difference solvers

•Original message passing version (in PVM) is SPMD, 
OpenMP starts serial then starts an SPMD parallel 
section
• In OpenMP version, shared data is only boundaries, everything 

else local (like PVM version)
• OpenMP calls all in Fortran – no C OpenMP compiler – caused 

difficulties for privatizing C global data, and thread issues 
(binding to processors, OS calls)

• Code scales equally well for PVM and OpenMP, on SGI 
Power Challenge (a DSM machine)
• This is a weak argument, because of likely poor PVM message 

passing performance (in general, and especially on DSM 
systems)
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TLNS3D
• CFD in Fortran77, uses MPI across grids and OpenMP to parallelize each 

grid
• Multiple, non-overlapping grids/blocks that exchange data at 

boundaries periodically
• Static block assignment to processors – divide blocks into groups of 

about equal number of grid points for each processor
• Boss-worker execution model for MPI level, then parallelize 3D loops 

for each block with OpenMP
• Many loops, so need to be careful about affinity of data objects to 

processors across loops

• Hard to balance MPI workers vs. OpenMP threads per block – tradeoff 
minimizing load imbalance vs. communication and synchronization cost
• Seems to work best on DSMs, but can be done well on distributed 

memory systems
• No performance results!
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CRETIN
•Physics application with multiple levels of message 

passing and thread parallelism
•Ported onto both distributed memory system 

(1464 4-processor nodes) and DSM (large SGI 
Origin 2000)
•Complex structure, with 2 parts discussed
• Atomic kinetics – multiple zones with lots of 

computation per zone – maps to either MPI or OpenMP
• Load balancing across zones is the problem – requires complex 

dynamic algorithm that benefits both versions
• Radiation transport – mesh/grid sweep across multiple 

zones, suitable for both MPI and OpenMP
• Two MPI options to parallelize, which one works best depends on 

problem size – one needs a transpose operation for the MPI 
version

•No performance results
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PETSc
• Portable, Extensible Toolkit for Scientific Computation
• Library to encapsulate commonly used functions and 

data structures for numerically solving partial 
differential equations
• Targeted at message passing for scalability, but hides it 

(mostly) from application
•Uses object-oriented programming techniques
• Data encapsulation
• Polymorphism
• Inheritance
• but implemented in C, so no compiler support

• Essentially SPMD style programming, but w/o explicit 
message passing
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6 guiding principles

•For performance
• overlap communication and computation
• determine details of repeated communication patterns, 

and optimize message passing across multiple calls 
(inspector/executor model)
• allow user to decide when communication occurs (if 

needed)
• allow user to aggregate data for later communication

•For ease of use
• allow user to work on distributed objects (arrays) without 

knowing which processor owns which data elements
•manage communication at higher levels, on objects, 

instead of directly using message passing
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Distributed Objects

• Low level data structures
• Vectors
• Matrices
• Index Sets

• Low level algorithms
• Create and assemble a vector or matrix – vector scatter/gather, 

sparse matrix examples in paper
•Higher level algorithms
• PDE solvers
• Linear and non-linear equation solvers
• Time steppers
• Preconditioners

•All functions take an MPI_Comm as an argument

CMSC 714 - Alan Sussman 13



Six Guiding Principles (again)

•Managing communication within higher level data 
structures and algorithms
• MPI calls generated to perform communication needed to 

perform higher level ops on distributed objects
• Implication is no optimizations across calls

•Overlap communication and computation
• Separate start and end of complex operations, so other 

computations can go on in between, like MPI non-blocking 
operations

• Precomputing communication patterns
• Generate a pattern of sends/receives for an operation on a 

distributed object (which may need communication), then 
reuse the pattern for subsequent data movement operations
• Often called inspector/executor model
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Guiding Principles (cont.)

• Programmer management of communication
• User can explicitly start and end communication via specific 

PETSc calls
• Often to enable overlap of communication with computation

•Work on distributed objects, not on individual data 
elements
• Avoids programmer having to move data between application 

data structures and library data structures
• Can build PETSc data structures from any process, with data for 

any process (not just local to a process)
• This is what is meant by “assembly”

•Aggregate data for communication
• To minimize number of messages
• Communication cost proportional to number of messages, plus 

per byte cost
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PETSc status

•Current version is 3.17
• See https://petsc.org
• Integrated with TAO optimization solver tooklit

•GPU support is available
• Through CUDA for NVIDIA GPUs
• Through OpenCL and HIP for AMD and Intel GPUs

• Interfaces for C, C++, Fortran, Python
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