
CMSC 714
Lecture 7

MPI w/OpenMP and PETSc

Alan Sussman

Notes

•MPI project due Monday, 6PM
• Questions on project?
• I will try to do grading within a week

•OpenMP project will be posted on the same day,
and due 2 weeks later
• Questions on OpenMP from lecture?

•More readings posted soon
• Don’t forget to send questions when you are assigned

CMSC 714 - Alan Sussman 2

OpenMP + MPI
•Some applications can take advantage of both

message passing and threads
• Questions is what to do to obtain best overall

performance, without too much programming difficulty
• Choices are all MPI, all OpenMP, or both
• For both, common option is outer loop parallelized with message

passing, inner loop with directives to generate threads

•Applications studied:
• Hydrology – CGWAVE
• Computational chemistry – GAMESS
• Linear algebra – matrix multiplication and QR

factorization
• Seismic processing – SPECseis95
• Computational fluid dynamics – TLNS3D
• Computational physics - CRETIN

CMSC 714 - Alan Sussman 3

Types of parallelism in the codes

• For message passing parallelism (MPI)
• Parametric – coarse-grained outer loop, essentially task parallel
• Structured domains – domain decomposition with local

operations – structured and unstructured grids
• Direct solvers – linear algebra, lots of communication and load

balancing required – message passing works well for large
systems of equations

• Shared memory parallelism (OpenMP)
• Statically scheduled parallel loops – one large, or several

smaller loops, non-nested parallel
• Parallel regions – merge loops into one parallel region to

reduce overhead of directives
• Dynamic load balanced – when static scheduling leads to load

imbalance from irregular task sizes

CMSC 714 - Alan Sussman 4

CGWAVE
• Finite elements - MPI parameter space evaluation at outer loop,

OpenMP sparse linear equation solver in inner loops
• Speedup using 2 levels of parallelism allows modeling larger bodies of

water in a reasonable amount of time
• Boss-worker strategy for dynamic load balancing in MPI part/component
• Solver for each component solves large sparse linear system with

OpenMP to parallelize
• On SGI Origin 2000 (distributed shared memory machine), use first touch

rule to migrate data for each component to the processor that uses it
• Performance results show that best performance obtained using both

MPI and OpenMP, with a combination of MPI workers and OpenMP
threads that depends on the problem/grid size
• And for load balancing, a lot fewer MPI workers than components

CMSC 714 - Alan Sussman 5

GAMESS
•Computational chemistry – molecular dynamics –

MPI across cluster, OpenMP within each node
•Built on top of Global Arrays package – for

distributed array operations
•Which in turn uses MPI (paper says PVM) and OpenMP

• Linear algebra solvers mainly use OpenMP for
dynamic scheduling and load balancing
•MPI versions of parts of code are complex, but can

provide higher performance for large problems
•Performance results on “medium” sized problem

from SPEC (Standard Performance Evaluation
Corp.) are for a small system (4 8-processor Alpha
machines) connected by Memory Channel

CMSC 714 - Alan Sussman 6

Linear algebra

•Hybrid parallelism with MPI for scalability and OpenMP
for load balancing, for MM and QR factorization
•On IBM SP system with multiple 4-processor nodes
• Studies tradeoffs of hybrid approach for linear algebra

algorithms vs. only using MPI (running 4 MPI processes
per node)
•Use OpenMP for load balancing and decreasing

communication costs within a node
•Also helps to hide communication latency behind other

operations – important for overall performance
•QR factorization results on “medium” sized matrices

show that adaptive load balancing is better than
dynamic loop scheduling within a node

CMSC 714 - Alan Sussman 7

SPECseis95

• For gas and oil exploration
• Uses FFTs and finite-difference solvers

•Original message passing version (in PVM) is SPMD,
OpenMP starts serial then starts an SPMD parallel
section
• In OpenMP version, shared data is only boundaries, everything

else local (like PVM version)
• OpenMP calls all in Fortran – no C OpenMP compiler – caused

difficulties for privatizing C global data, and thread issues
(binding to processors, OS calls)

• Code scales equally well for PVM and OpenMP, on SGI
Power Challenge (a DSM machine)
• This is a weak argument, because of likely poor PVM message

passing performance (in general, and especially on DSM
systems)

CMSC 714 - Alan Sussman 8

TLNS3D
• CFD in Fortran77, uses MPI across grids and OpenMP to parallelize each

grid
• Multiple, non-overlapping grids/blocks that exchange data at

boundaries periodically
• Static block assignment to processors – divide blocks into groups of

about equal number of grid points for each processor
• Boss-worker execution model for MPI level, then parallelize 3D loops

for each block with OpenMP
• Many loops, so need to be careful about affinity of data objects to

processors across loops

• Hard to balance MPI workers vs. OpenMP threads per block – tradeoff
minimizing load imbalance vs. communication and synchronization cost
• Seems to work best on DSMs, but can be done well on distributed

memory systems
• No performance results!

CMSC 714 - Alan Sussman 9

CRETIN
•Physics application with multiple levels of message

passing and thread parallelism
•Ported onto both distributed memory system

(1464 4-processor nodes) and DSM (large SGI
Origin 2000)
•Complex structure, with 2 parts discussed
• Atomic kinetics – multiple zones with lots of

computation per zone – maps to either MPI or OpenMP
• Load balancing across zones is the problem – requires complex

dynamic algorithm that benefits both versions
• Radiation transport – mesh/grid sweep across multiple

zones, suitable for both MPI and OpenMP
• Two MPI options to parallelize, which one works best depends on

problem size – one needs a transpose operation for the MPI
version

•No performance results
CMSC 714 - Alan Sussman 10

PETSc
• Portable, Extensible Toolkit for Scientific Computation
• Library to encapsulate commonly used functions and

data structures for numerically solving partial
differential equations
• Targeted at message passing for scalability, but hides it

(mostly) from application
•Uses object-oriented programming techniques
• Data encapsulation
• Polymorphism
• Inheritance
• but implemented in C, so no compiler support

• Essentially SPMD style programming, but w/o explicit
message passing

CMSC 714 - Alan Sussman 11

6 guiding principles

•For performance
• overlap communication and computation
• determine details of repeated communication patterns,

and optimize message passing across multiple calls
(inspector/executor model)
• allow user to decide when communication occurs (if

needed)
• allow user to aggregate data for later communication

•For ease of use
• allow user to work on distributed objects (arrays) without

knowing which processor owns which data elements
•manage communication at higher levels, on objects,

instead of directly using message passing

CMSC 714 - Alan Sussman 12

Distributed Objects

• Low level data structures
• Vectors
• Matrices
• Index Sets

• Low level algorithms
• Create and assemble a vector or matrix – vector scatter/gather,

sparse matrix examples in paper
•Higher level algorithms
• PDE solvers
• Linear and non-linear equation solvers
• Time steppers
• Preconditioners

•All functions take an MPI_Comm as an argument

CMSC 714 - Alan Sussman 13

Six Guiding Principles (again)

•Managing communication within higher level data
structures and algorithms
• MPI calls generated to perform communication needed to

perform higher level ops on distributed objects
• Implication is no optimizations across calls

•Overlap communication and computation
• Separate start and end of complex operations, so other

computations can go on in between, like MPI non-blocking
operations

• Precomputing communication patterns
• Generate a pattern of sends/receives for an operation on a

distributed object (which may need communication), then
reuse the pattern for subsequent data movement operations
• Often called inspector/executor model

CMSC 714 - Alan Sussman 14

Guiding Principles (cont.)

• Programmer management of communication
• User can explicitly start and end communication via specific

PETSc calls
• Often to enable overlap of communication with computation

•Work on distributed objects, not on individual data
elements
• Avoids programmer having to move data between application

data structures and library data structures
• Can build PETSc data structures from any process, with data for

any process (not just local to a process)
• This is what is meant by “assembly”

•Aggregate data for communication
• To minimize number of messages
• Communication cost proportional to number of messages, plus

per byte cost

CMSC 714 - Alan Sussman 15

PETSc status

•Current version is 3.17
• See https://petsc.org
• Integrated with TAO optimization solver tooklit

•GPU support is available
• Through CUDA for NVIDIA GPUs
• Through OpenCL and HIP for AMD and Intel GPUs

• Interfaces for C, C++, Fortran, Python

CMSC 714 - Alan Sussman 16

https://petsc.org/

