
CMSC 714
Lecture 11

GPUs

Alan Sussman

Notes
•OpenMP project due Monday
• don’t compile for profiling (with –pg) and for OpenMP at

same time
• questions?

•MPI project grades out soon
• Grade and a report by email

•Research project proposal due a week after
OpenMP project deadline

CMSC 714 - Alan Sussman 2

Recent (2016) NVIDIA GPU architecture

• Targeted at both HPC workloads and deep learning
• Supports double precision (64-bit) FP all the way to half-

precision (16-bit)

• 6 Graphics Processing Clusters (GPCs), each with 10
Streaming Multiprocessors (SMs), 8 512-bit memory
controllers, 4 stacks of HBM2 DRAM (16GB)
• Each SM has 64 CUDA (SIMD) cores, partitioned into 2

32-core blocks, 4 texture units (mainly for graphics
operations on bitmap images), 256KB registers
• Each memory controller has 512KB L2 cache, 2

controllers for each HBM2 memory stack

CMSC 714 - Alan Sussman 3

A Streaming Multiprocessor (SM)

•2 blocks of 32 single-precision (FP32) cores (or 32
total double-precision (FP64)), each with instruction
buffer, warp scheduler (warp is a set of SIMD
threads), 2 dispatch units
• And 64KB shared memory per SM plus an L1 cache – to

gather data for all threads of a warp before loading into
registers
• 4MB L2 cache is shared across all SMs

•Atomic memory operations
• For shared memory operations (synchronization) between

threads/warps (even on different GPUs), using Unified
Memory and NVLink

CMSC 714 - Alan Sussman 4

Additional features

•RDMA via GPUDirect
• To allow other devices (e.g., Infiniband, SSD) to directly

access memory on multiple GPUs – can help with MPI
latency for sends/receives to/from GPU memory

•HBM2 memory
• Provides very high bandwidth DRAM by directly

connecting stacks of memory dies vertically, with vias
(holes) through the dies to connect them to the GPU die
• 4-8 DRAM dies per stack, up to 8 Gb per die, up to

180GB/sec per stack, max 4 stacks per GPU
• SECDED error correction

CMSC 714 - Alan Sussman 5

Additional features
• NVLink high speed interconnect
• High speed bus connecting pairs (or more) of GPUs, much higher

bandwidth than PCIe – 40GB/sec bidirectional bandwidth
• Helps support shared memory across GPUs – full support for atomic

operations across GPUs
• For even higher bandwidth, can combine up to 4 links into 1

connection – 160GB/sec
• Can also be used to connect to NVLink-enabled CPU

• Unified Memory
• Basically gives single virtual address space across GPU and CPU

memory, so physical pages can be mapped from both sides
• Helps limit copies, and with irregular memory accesses in warps
• For performance, still need to maintain locality
• Simplifies user programs, since no special memory allocator needed
• Paging mechanism guarantees global coherency across GPU and CPU

memory

CMSC 714 - Alan Sussman 6

More recent GPUs - Ampere

•Recent focus on machine learning (ML) training and
inference applications
• Focusing on deep neural networks (DNNs) of various

types
• Training is the really computationally expensive part
• Very high performance obtained by DL-specific data types

and instructions – FP32, FP16, INT8, and INT4, BFLOAT16
•Most recent Ampere architecture added support for

sparse data computations (of a very specific type needed
for DL training and inference)

CMSC 714 - Alan Sussman 7

HPC Features in Ampere

•Added some support for barrier operations to ease
coordination of asynchronous tasks (so more flexibility),
and for collective operations
• Tensor core support for FP64 (double precision floating

point) operations
•Higher bandwidth NVLink (up to 600GB/s off chip)
• To scale up connect up to 8 GPUs

•Application performance still limited by memory
bandwidth, even with new generations of HBM
• Paper notes that until recently the GPU programming

model has been UMA (any SM can access any memory
available in a GPU at same speed), but that can no
longer be sustained
• Programs (and programmers) have to be aware of NUMA to get

the best performance

CMSC 714 - Alan Sussman 8

GPUs vs. CPUs
• Study targeting throughput computing
• Also called streaming applications sometimes, or data parallel

•Architectural limits to parallelism
• CPUs have limited number of cores
• GPUs have limited capabilities, e.g., no caches (not true now)

• End results, on a set of representative benchmarks, is
that GPU performs 2.5X faster than CPU
• Application kernels include linear algebra (SGEMM from

BLAS), Monte Carlo, Convolution, FFT, SAXPY (from BLAS),
Lattice Boltzman (CFD), Constraint Solver, Sparse
Matrix/Vector Multiply, Collision Detection (virtual
environments), Radix Sort, Ray Casting, Index Search,
Histogram, Bilateral Filter (image processing)
• Platforms are Intel Core i7 CPU (4 hyper-threaded cores, 4-

wide SIMD units, and caches) and NVIDIA GTX280 GPU (array
of 30 SMs, each with 8 scalar processing units and local
memory)

CMSC 714 - Alan Sussman 9

GPUs vs. CPUs
•Main advantage of CPU is caches
• For fast single thread performance, but also helps with multi-

threaded apps
• Disadvantage is complexity, limiting number of cores per chip
• Also have fast synchronization

•Main advantage of GPU is high throughput
• each instruction for an SM executes on 8 scalar units (32 data

elements)
• Disadvantage is need to move data explicitly into (small) SM memory

from large shared memory
• Also have support for gather/scatter from memory and special

functional units (e.g., texture sampling, math ops)
• Performance measurements for GPU assume data already in

GPU memory (from other GPU computations)
• Overall performance of GPU (geometric mean) is 2.5X of

CPU (nth root of product of speedups)
• Why? Because they optimized both CPU and GPU versions of the

kernels

CMSC 714 - Alan Sussman 10

