CMSC 714
Lecture 12
High Performance Networks

Alan Sussman
Notes

• OpenMP assignment due Monday
 • don’t compile for profiling (with –pg) and for OpenMP at same time
 • For fine-grained timing, use `omp_get_wtime()` – works similarly to `MPI_Wtime()`
 • other questions?

• Readings for next week posted
 • Don’t forget to send questions
Infiniband

- Designed to support I/O and network connectivity, from a single PCB to a cluster network to a LAN
 - over copper (twisted pairs) and fiber
- Targeted at cluster networks, SANs, and even embedded systems
 - scalable, and provides RAS – “bandwidth out of the box”
 - idea is to extend the on-processor I/O bus to off-chip network
- Switched point-to-point I/O fabric
 - endpoints (host machines, I/O devices, ...) connect to switches, which route connections to other endpoints
 - link speed from 2.5Gb/sec (1X) to 30Gb/sec (12X) by adding more wires – parallel transfers – newer standards use higher link speeds for higher transfer rates
- Protocols described in terms of standard network layers
 - physical, link, network, transport
Infiniband Layers

• **Physical**
 - defines electrical and mechanical characteristics – cables, connectors, pins, etc.

• **Link**
 - packet layout - management and data
 - switching - uses local IDs in Local Route Header of a packet
 - QoS through Virtual Lanes
 - credit based flow control
 - data integrity – error correction both for each link (VCRC) and end-to-end (ICRC)

• **Network**
 - route packets across subnets – uses IPv6 addresses (128 bits) in Global Route Header of a packet
Infiniband Layers (cont.)

• **Transport**
 • in-order packet delivery – sequence numbers
 • segmenting data into packets
 • channel multiplexing
 • transport services – reliable/unreliable connection/datagram
 • all implemented in hardware
Cray Gemini

- Improvement to SeaStar network for Cray HPCs
- System-on Chip (SoC) constructs 3D torus network to scale to > 100,000 nodes
- Built for fast MPI
- Each NIC connects 2 nodes allowing for 10 connections per block (2 NICS per ASIC)
- Adaptive routing and ECC memory add layer of fault tolerance to prevent job termination in the event of limited hardware failure
Gemini Block Structure

- Each node has HyperTransport3 connections (up to about 8GB/s) with a dedicated NIC
- Each block contains a router and supervisor processor (L0) connected to Hardware Supervisory System (HSS)
- Router has 8 links to x/z and 2 links to y neighbors
- Direct data transfer between nodes without OS intervention (specify address, id, and size)

Figure 3: Gemini block structure
Gemini NIC

• **Fast Memory Access (FMA)**
 - Puts, Gets done directly on NIC (up to 64 bytes)
 - Translated from processor loads/stores into full 58 bit network addresses
 - Has its own sync/barrier methods

• **Block Transfer Engine (BTE)**
 - Asynchronous transfers between local and remote memory
 - No guarantee of order, but can use fence operations for synchronization
 - Up to 4 GB w/o CPU involvement (after setup)
 - Higher bandwidth but also higher latency than FMA

• **Completion Queue (CQ)**
 - Notification mechanism for FMA and BTE

• **Atomic Memory Operation (AMO)**
 - Multiple processes accessing the same variables (e.g., atomic remote add, conditional swap, to build higher level collective and sync functions)
 - Prevents program locking
 - Dedicated AMO cache reduces load on host memory
Performance

• Clock Speeds
 • NIC 650 MHz
 • Router 800 MHz
 • SERDES 3.1 to 6.25 GHz
 • HyperTransport 1600 – 2600 MHz

• Latency
 • End-point 700 ns
 • 1.5 micro or less for small MPI (HyperTransport reads)

• Bandwidth
 • NIC transfers 64 bytes every 5 cycles in each direction
 • 8.3 Gbytes/s
 • Improved bandwidth as PPN increases

• AMO Performance
 • Atomic adds
 • Single AMO all performed on AMO cache
 • Achieved 45 – 100 million updates per second