
CMSC 714
Lecture 15

Lamport Clocks and Race Conditions

Alan Sussman
(with thanks to Chris Ackermann)

Notes
•MPI Project results sent
• If you have questions, send me email

•OpenMP projects
•Working on them, but no results until next week

•Research project questions?

CMSC 714 - Alan Sussman 2

Lamport Clocks
•Distributed systems are inherently concurrent,

asynchronous, and nondeterministic, so executing
programs on multiple machines requires
coordination
• Lamport introduce methods to define an ordering

of events
•Want to create a partial ordering of events

(instructions, message passing, or whatever)
•Define a happens before relation: a → b
• event a happened before event b
• event a can causally affect event b

CMSC 714 - Alan Sussman 3

Happens Before Relation

1. If a and b are events in the same process, and a
comes before b, then a → b

2. If a is sending of a message by one process and b
is the receipt of the same message by another
process, then a → b

3. If a → b and b → c then a → c (transitivity)

• Partial Order: Unordered events are concurrent

CMSC 714 - Alan Sussman 4

Logical Clocks
• Clock Condition: For any events a, b: if a → b then

C<a> < C
•Holds if C1 and C2 are satisfied:
• C1. If a and b are events in Process Pi, and a comes before b,

then Ci<a> < Ci
• C2. If a is the sending of a message by process Pi and b is the

receipt of that message by process Pj, then Ci<a> < Cj

• Implementation
• IR1. Each process Pi increments Ci between any two successive

events
• IR2a. If event a is the sending of a message m by Process Pi,

then the message m contains a timestamp Tm = Ci<a>.
• IR2b. Upon receiving a message m, process Pj sets Cj greater

than or equal to its present value and greater than Tm.

CMSC 714 - Alan Sussman 5

Total Ordering
•Partial ordering not always enough

•Prioritize processes Pi ≺ Pj

•Total ordering a ! b :

If a is in Pi and b is in Pj, then a ! b iff
• Ci<a> < Cj
• Ci<a> = Cj and Pi ≺ Pj

CMSC 714 - Alan Sussman 6

Logical Clocks

• Issues with physical clocks (clock drift, etc.)
•For many purposes, it is sufficient to know the

order in which events occurred
•BUT: Logical clocks cannot be used to order events

outside the system

CMSC 714 - Alan Sussman 7

Strong Clock Condition

•Approach does not take into account external
events

•Define new set of events L

•Strong Clock Condition: For any events a, b in L:

if a⇨ b then C<a> < C

•Achieve strong clock condition with physical clocks

CMSC 714 - Alan Sussman 8

Physical Clocks
•Run continuously
•PC1. Clocks must run at approximately the correct

rate
• "k. k << 1 , |dCi(t)/dt-1| < k

•PC2. Clocks must be synchronized
• |Ci(t) - Cj(t)| < ε

•Minimum message delay µ
• Ci(t+ µ) – Cj(t) > 0

•Satisfying Strong Clock Condition:
• IR1: Each event occurs at a precise instant
• IR2:
• If Pi sends a message m at physical time t, then m contains a

timestamp Tm = Ci(t).
• Upon receiving a message m at time t’, process Pj sets Cj(t’) equal

to the maximum of Cj(t’) and (Tm + µm)
CMSC 714 - Alan Sussman 9

Race Conditions
•What is the problem?
• Implementing multi-threaded programs is difficult and error

prone

•Who cares?
• Developers (and users) of multi-threaded systems

•What is the approach?
• Provide tool support to automatically verify synchronization

CMSC 714 - Alan Sussman 10

Data Races
•Data Race
•More than 1 thread has read or write access to a variable

without synchronization, and at least one is doing a write
•Static race detection
• Analyze the program code, so does not require that the

program execute
• Difficult analysis, if sound (does not produce false

negatives) tends to produce many false positives (lack of
completeness)
• Getting both soundness and completeness is undecidable

CMSC 714 - Alan Sussman 11

Data Races (cont.)

•Dynamic race detection
• Analyze the events from a single program execution to

determine the occurrence of a race condition in one
program execution
• Can be sound and complete, but only for that execution
•Want to have the single input, single execution (SISE)

property, so that a single execution instance is sufficient
to determine the existence of a data race for a given
input.
• Two basic kinds – based on happens-before (HB) relation

(Lamport), and based on locksets (e.g, Eraser algorithm)

CMSC 714 - Alan Sussman 12

HB-based Dynamic Race Detection
• Inefficient since large amount of information is

required
•Basic idea has 3 parts:
• track the HB-relation within each thread
• keep an access history as a sequence of logical

timestamps for each shared resource (variable or memory
location)
• validate that, for every resource, critical accesses are

ordered by the HB-relation
•While the analysis can be sound and complete, the

article shows that with a more general notion of
data races, the HB-based analysis does not report
all possible data races so is not sound wrt that
definition

CMSC 714 - Alan Sussman 13

Lockset-based Detection

•Targeted at programs that use critical sections as
their primary synchronization model
•Validates that a program execution adheres to a

programming policy, called a locking discipline
• E.g., threads that access a common memory location

must hold a mutual exclusion lock when performing the
access

•Compliance with the locking discipline implies that
executions don’t have a data race
•Validation can be done with static or dynamic

analysis, or both

CMSC 714 - Alan Sussman 14

Lockset-based algorithm

• Each thread tracks at run-time the set of locks it currently
holds – i.e. via a shadow location for each variable that holds
the current lockset
• On the first access to a shared variable, the shadow memory

is initialized with the lockset of the current thread.
• On subsequent accesses, the lockset in shadow memory is

updated by intersecting it with the lockset of the accessing
thread.
• If the intersection is empty and the variable has been

accessed by different threads, a potential data race is
reported.
• Lockset-based detection is sound, and has the SISE property
• Detection is incomplete, since accesses that violate the

locking discipline may be ordered by other means of
synchronization – so can get false positives

CMSC 714 - Alan Sussman 15

Static Data Race Detection

• Pragmatic methods look for deviations from common
programming practice
• Examples include FindBugs for Java from UMD, RacerX for large OS

codes
•Methods based on dataflow analysis
• May-happen-in-parallel analysis (MHP) to compute the may-happen-

in-parallel relation among statements in different threads
• Inter-process precedence graph for determining anomalies in

programs with post-wait synchronization
• Type-based methods
• To model and express data protection and locking policies in data and

method declarations
•Model checking
• To explore every possible control flow-path and variable value

assignment for undesired program behavior
• Since that is computationally intractable, models of the data and

program are explored

CMSC 714 - Alan Sussman 16

