
CMSC 714
Lecture 17

Runtime Parallelization

Gary Jackson and Alan Sussman

Notes

•Midterm exam in 2 weeks, on Thursday, Nov. 10
• on readings through previous week

•Group Project interim report due Nov. 7
•Still working on grading OpenMP project – will

be done this week

CMSC 714 - Alan Sussman 2

Outline

•Overview
•Compiler-driven: Multiblock Parti
• Library-driven: Global Arrays
•Conclusion

CMSC 714 - Alan Sussman 3

Overview

•Writing good parallel programs for distributed
memory systems is hard.
• Idea: abstraction on top of message passing to

get results
•We can do this where communication is regular:

block-structured applications
• Trade off: (somewhat) reduced performance for

reduced effort

CMSC 714 - Alan Sussman 4

Multiblock Parti

•Provide High Performance Fortran-like language
enhancements to support block-structured
applications
•Treat things statically, where we can
• Like Fortran D, High Performance Fortran, etc.

•Use run-time support where we can't establish
compile-time bounds

CMSC 714 - Alan Sussman 5

Runtime Support

•Regular_Section_Move_Sched
• Schedule a regular section move
• Accommodates block, cyclic, and block-cyclic

distributions when the bounds & strides are known at
run-time

•Overlap_Cell_Fill_Sched: schedule moves for
overlap / ghost cells

CMSC 714 - Alan Sussman 6

Compiler Support

•Additional HPF-like directives
•Static analysis for data distribution
• Insert calls for runtime workload partitioning

based on data distribution

CMSC 714 - Alan Sussman 7

Static Analysis

•Done on for_all loop parameters
•Categorize one of three ways
• No communication necessary
• Copy overlap (ghost) regions
• Copy regular sections

CMSC 714 - Alan Sussman 8

Experiment: Overhead

•Extra time from
library calls and
schedule building
isn't too bad

CMSC 714 - Alan Sussman 9

Experiment:
Multiblock Code

•Within 20% of hand-
parallelized F77
•Difference between

compiler-
parallelized & hand-
parallelized F90 is
mostly in computing
loop bounds and
searching for
previously-used
schedules

CMSC 714 - Alan Sussman 10

Experiment:
Multigrid Code

•Within 10% of
hand-
parallelized
code

CMSC 714 - Alan Sussman 11

Experiment:
Compiler Optimizations

• Performance stinks if
schedules are not
saved
(Version I)
•Hand-implemented

reuse improves over
runtime reuse (II vs.
III)
•Un-implemented

optimization for loop-
bounds in
subroutines also
improves
(Version IV)

CMSC 714 - Alan Sussman 12

Global Arrays
• Library for parallelization abstraction
• On distributed memory systems (clusters)
• SPMD model

• Idea is to program as if shared memory, but move
data between distributed memory and local
memory as needed
• Only operate on local data within each process

•Compatible with MPI, so can mix GA calls with MPI
calls as needed
• Built on top of ARMCI (Aggregate Remote Memory Copy

Interface) library for one-sided communication (put/get)
– portable and efficient
• One-sided can be more efficient than send/receive, as

shown for some applications, since less synchronization

CMSC 714 - Alan Sussman 13

Global Arrays
•Programmer can map both ways between global

and local views of data objects (arrays)
• But only compute on local view

•GA is also aware of SMP (multi-core) nodes
• To support “mirrored view” – caching distributed

memory data in shared memory for multiple
processes to use

•Also has direct support for ghost cells
• To avoid distributed to local copies for structured grid

applications
• And for periodic boundary conditions

•Paper also talks about sparse data management
• But not clear how efficient GA is for computing with

sparse matrices/vectors

CMSC 714 - Alan Sussman 14

Global Arrays
•Data parallel interfaces to operate on global arrays
• To interface with other libraries like BLAS, SCALAPACK to

perform data parallel collective operations
•Disk Resident Arrays allow extending global arrays to

out-of-core
• Basically distributed memory stored on (local) disks
• With operations to move data between disks (instead of

distributed memory) and local memory in each process
• Support for mapping global arrays onto subsets of

processors
•Many similarities to Multiblock Parti, but also supports

copies from global to local view
• Performance results show good scaling on several

applications for parallel systems available at that time
• All the applications employ large, dense, multi-dim data grids
• And can take advantage of both low-latency and high-

bandwidth networks (through ARMCI)

CMSC 714 - Alan Sussman 15

Overall Conclusion

•We can get close to hand-coded performance
with these systems
•Are they easier to use?
•Current status:
•Multiblock Parti no longer supported, other than

inside applications and other parallel libraries
• Global Arrays still supported by PNNL, latest release in

Dec. 2021, and now uses ComEx (Communication
Runtime for Extreme Scale) for communication, which
by default uses MPI (and uses shared memory across
processes on the same node)

CMSC 714 - Alan Sussman 16

