
CMSC 714
Lecture 18
Autotuning

Alan Sussman

Notes
•Midterm exam in on Thursday, Nov. 10
• on readings through previous week

•Group Project interim report due Nov. 7

2CMSC 714 - Alan Sussman

Autotuning for HPC Applications
•Overall goal is performance portability
• Across diverse HPC architectures
•Which has not been achievable through languages and

compilers
• Involves “automatic generation of a search space of

possible implementations of a computation that are
evaluated through models and/or empirical
measurement to identify the most desirable
implementation”
•Search space is a set of code variants functionally

equivalent
• Paper says to an original implementation, but could be to

a specification (e.g., an API)

3CMSC 714 - Alan Sussman

Autotuning
• Empirical autotuners
• Execute each code variant
• Measure runtime (or another objective function)
• Evaluate performance of each variant
• Run the best performing variant
• Need intelligent search methods and models to prune a

potentially very large search space
• Can also use runtime prediction models, esp. for long-running

kernels
• Code variants
• Different code organization, data structures, algorithms, low-

level implementation details
• Parallelization strategies
• Memory hierarchy optimization (data placement,

blocking/tiling, tile size)
• Can be applied offline, or online while the application is

running, or even incrementally

4CMSC 714 - Alan Sussman

Tools
• Libraries
• Isolate performance critical functions behind a standard API
• Examples include Atlas (linear algebra), SPIRAL (digital signal

processing), Sparsity (sparse matrix computations), FFTW (fast
Fourier transforms)

• Compilers and code generators
• Generate a collection of architecture-specific codes from same

high-level input
• Examples include CHiLL (USC, Utah, UMD), Orio (Oregon, Ohio

State), POET (Georgia Tech, LLNL)
• Can include parallelization – SIMD pragmas, OpenMP

directives, CUDA, etc.
• And various loop optimizations – tiling, unrolling, permutation,

fusion, distribution, prefetching, software pipelining, …
• And what order to apply them

5CMSC 714 - Alan Sussman

Application-level tools
• Tools allow expressing tunable parameters and code

variants representing alternate implementations
• Can select code variant based on problem size, to target

different levels of memory hierarchy or parallelism
• Must be done at runtime if depends on input dataset
• Active Harmony (UMD) and Adapt (Purdue) can create, link, test new

variants in parallel with execution during iterative computations

•Disadvantage is that each application developer has to
specify autotuning
•New frameworks like RAJA (LLNL) and Kokkos (SNL) can

specialize high level code using C++ template
abstractions around loops and data structures
•Domain specific languages (DSLs) for some application

areas – e.g., Halide for image processing, others for
stencil computations (PDEs)

6CMSC 714 - Alan Sussman

Search
•Evaluate points in the search space (parameter

values, code variants) to find optimal solution
•Complete enumeration
• Doesn’t scale since there can be too many points in the

search space
•Two ways to limit search space to a subset
•Model-free – global or local search
• Global includes simulated annealing, genetic algorithms, particle

swarm optimization – guaranteed to find global optimum if given
long enough search time, but in practice stop earlier
• Local includes Nelder-Mead simplex, orthogonal search, variable

neighborhood search – move from current to nearby point in
search space, so can terminate in a local optimum

•Model-based
• Use performance prediction metrics (analytical or empirical

models)
• Limited by accuracy of models

7CMSC 714 - Alan Sussman

Software Engineering Challenges
•Offline autotuning makes compilation slow
•Many variants need to be compiled and executed

•Empirical autotuning makes developer manage the
tuning process
•Build process for autotuning can be complex
• Can be different while autotuning vs. running autotuned

code (library, application, etc.)
•Package management systems (e.g., Spack) help
• Can wrap compilers to generate autotuning variants

•Debugging autotuned code can be difficult
• You may be running automatically generated code!
• But the generated code is more likely than yours to be

correct …

8CMSC 714 - Alan Sussman

ATLAS
•Automatically Tuned Linear Algebra Software
• Library produced by autotuning – they call it automated

empirical optimization of software (AEOS)
• Start from well-known, widely used API for linear

algebra core operations
• BLAS – basic linear algebra subroutines
• For linear algebra, need to characterize parameters that vary

across machines – biggest one is blocking factor for blocked LA
algorithms, which affects cache utilization
• Can also try different source code implementations
• Multiple implementations or code generation

• To produce highly tuned code, not enough to
understand the hardware
• Because of complex interactions between hardware features,

compiler, OS, …
• So we’re back to an empirical process – try code variants,

parameter values, etc. to find the best implementation on a
specific machine

9CMSC 714 - Alan Sussman

ATLAS
•Goal is portable, efficient implementation of BLAS
• BLAS are building blocks for performing vector and matrix

operations
• Level 1 is vector-vector
• Level 2 is matrix-vector
• Level 3 is matrix-matrix

• Level 1 has no possible memory reuse, so not addressed
• Level 2 memory blocking allows for reuse of vector

operands, but not matrix
• Reduces movement of vector operands from O(N2) to O(N)
• Allows for modest speedups – 10-300%

• Level 3 blocking allows for reuse of both operands
• Blocking reduces O(N3) fetch costs to O(N2)
• Also better optimizes O(N3) computation costs than many

compilers (run on non-blocked code)
• Can give orders of magnitude performance improvements

10CMSC 714 - Alan Sussman

ATLAS
• Level 3 BLAS mainly targets generalized matrix

multiplication (GEMM)
• 𝐶 ← 𝛼𝑜𝑝 𝐴 𝑜𝑝 𝐵 + 𝛽𝐶 , 𝑜𝑝 𝑋 = 𝑋 𝑜𝑟 𝑋T

• C is an MxN matrix, op(A) and op(B) are MxK and KxN
•Uses both parameterized adaptation and code

generation to adapt to a new machine
• To generate L1 cache-contained matrix multiply kernel

•Most of the paper goes into the details of how to
generate the MM kernel that fits into L1 cache
• All sorts of decisions need to be made about copying matrices,

which matrix is in the outermost loop, writing output to C or to
an output temporary matrix, choosing loop structure to help
with L2 cache reuse
• ATLAS determines size of L1 data cache, but not L2 (instead

computes a value that represents the amount usable for its
blocking)

11CMSC 714 - Alan Sussman

ATLAS
• Other optimizations
• Instruction cache reuse – fit code into L1 instruction cache
• Floating point instruction ordering – to hide pipeline latencies (if no

fused multiply-add) – modern processors do out-of-order execution
in hardware, so this is not needed
• Reduce loop overhead by loop unrolling
• Expose instruction-level parallelism – for floating point computations

and for memory fetches
• Search heuristic uses a code generator coupled with a timer

routine
• Start with some initial good guesses, then try different loop unrolling

and latency hiding strategies to find the best performing variant and
parameter values

• Performance results show that ATLAS produces code that is
as good as vendor BLAS implementations and much better
than what a compiler can do
• For 500x500 matrices

• Paper also discusses Level 2 BLAS optimization process
• More complex in some ways than Level 3!

12CMSC 714 - Alan Sussman

