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Molecular Dynamics
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Notes

* Graded exams returned next Tuesday

* Group Project presentations scheduled for Dec. 6,
and Dec. 8 (if needed)

* final report due Monday, December 12
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Molecular Dynamics

® Calculate trajectories of atoms and molecules by solving

Newton’s equations of motions

® Force calculations
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® Non-bonded interactions: van derWaal’s
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Sequential Algorithm

* At every step, calculate forces on each atom

 Calculate bonded and short-range forces every step

* Calculate long-range non-bonded forces every few time steps (using
PME or P3M etc.)

* Particle mesh Ewald (PME) summation:

 Calculate long-range interactions in Fourier space
* Calculate velocities and new positions

* Repeat ...
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Traditional approaches to parallelization

* Atom decomposition:

 Partition the atoms across processes

* Force decomposition:
* Distribute the force matrix to
processes — —
* Matrix is sparse and non-uniform E— —
‘ \ 16 A
* Spatial decomposition: — — 16 A

* Assign a region of the 3D simulation space to each process



Hybrid parallelization

* Hybrid of spatial and force decomposition

* Decouple assignment of
data and work to processes
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e Distribute both atoms and
the force calculations to
different processes



Neutral territory (NT) methods

* Desmond’s mid-point method
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Particle mesh Ewald method

* Replace direct force calculations by:

 Calculate short-range forces in real space

* Calculate long-range forces in Fourier space

* Create a 3D mesh/grid representing charge densities of
atoms

* Compute a 3D Fast Fourier Transform (FFT)

* FFT computes the discrete Fourier transform (DFT) or inverse
DFT

* Reduces the complexity from O(N?) to O(N log N)



Parallelization of PME (3D FFT)

*1D or slab decomposition
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Parallelization of PME (3D FF

* 2D or pencil decomposition
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NAMD

* MD code for large biomolecular systems
* Implemented in parallel using CHARM++

* Targets large physical systems, for a large number of
time steps
* Tens to hundreds of thousands of molecules/atoms

* Simulating maybe ten nanoseconds (10) of real time, at one
femtosecond (101°) per time step

* CHARM++

* C++ language/programming model that provides object-based
message-driven execution model

* Load balances objects across nodes/processors dynamically,
and allows users to develop their own load balancers — objects
can migrate across nodes at runtime

* Objects interact via asynchronous method invocation

» Users have to decide on granularity of objects, to balance
complexity, locality, load balancing, etc.
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NAMD

* To get sufficient Barallelism, computation decomposed both
spatially (into cubes with size determined by cutoff radius) and by
forces (with separate non-bonded force computation objects)

* Methods needed to get good load balancing are quite complex,
and bind some objects to nodes while others can migrate
* Initial load balancing uses recursive coordinate bisection
* Dynamic load balancing is measurement-based to refine the initial (and
subsequent) assignments

» Uses proxy (ghost) objects as needed to provide data for local
computations that need data from objects owned by other
nodes/processors

* Uses PME for electrostatic computations, so needs efficient 3D FFTs using
CHARM++, via modified FFTW routines

* Extensive performance results show good weak scaling up to 512
processors for large molecular systems

* But not clear how the methods would scale on modern multicore
systems since best results don’t use all processors on each node (3 is
better than 4 on PSC Lemieux)

* They also show better performance directly using Elan message passing
library for Quadrics network compared to MPI
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Anton

* Special purpose machine built for molecular
dynamics simulations, built at D.E. Shaw Research

* to simulate biological processes that occur on very small
time scales (101> sec), such as protein folding,
interaction between proteins, etc.

* and simulate those processes for a long time

* Molecular dynamics

* force calculation followed by integration step to move
particles

* biomolecular forces have 3 parts
* bonded forces — small atomic groups with covalent bonds

* van der Waals forces — all pairs of atoms, but fall off quickly with
distance (so only need close ones)

* electrostatic forces — all pairs of atoms, fall off slowly with
distance — divide into 2 parts to avoid all pairs computation
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Anton

* Anton machine
* up to 512 nodes in 8x8x8 torus

* each node has 2 parts on 1 chip

* high throughput interaction subsystem (HTIS) for range-limited interactions,
using 32 hardwired pairwise point interaction pipelines (PPIPs)

* flexible subsystem with 8 programmable geometry cores (GCs) for less structured
part of MD computation, 4 Tensilica processors, 4 data transfer engines

* plus DRAM controllers, 6 network interfaces, and host interface for I/0

* Most of computational time mapped to PPIPs, which run those
computations maybe 100x faster than standard microprocessor
core

* And computations spatially decomposed across nodes, with
some twists to deal with communication as particles move
between spatial domains

* Uses fixed-point arithmetic, with various bit widths, for several
reasons:
» performance — fixed-point hardware fast and small
e fixed point arithmetic is truly associative

* gain determinism — run same simulation again get exact same results
it-for-bit (doesn’t really help, since MD is a chaotic system, so need
ensemble)

e computations are reversible
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Anton

* Performance results show can run a large chemical
system at much higher rates than any previous
system

e can run multiple microseconds of simulation time per day

of wall clock time

* maybe 500 times faster than 512 node Intel Xeon cluster

* and have run simulated systems up to over 1000 microseconds,
which showed interesting behavior of the molecules

* and results are validated very well
* both against “known” results and using statistical error tests
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