
CMSC 714
Lecture 24

Data Intensive Applications

Alan Sussman



Notes
•Group Project presentations next Tuesday (and 

Thursday if needed)
• final report due Monday, December 12

•Zaratan opening celebration on Thursday in Stamp 
Atrium from 1-3PM on Thursday
• You should all have received invitations

•Course evaluation (Student Feedback on Course 
Experiences) web site open
• https://www.CourseEvalUM.umd.edu

CMSC 714 - Alan Sussman 2

https://www.courseevalum.umd.edu/


Virtual Microscope
• Software emulation of a light microscope, to view and 

manipulate very large slide images, built at UMD and 
Johns Hopkins med school
• for viewing and processing images captured from standard 

pathology specimens (need special purpose hardware for high 
throughput data capture)
• problem is very large data sizes
• a slide is maybe 30K pixels on a side at high resolution, so one focal 

plane is maybe 10GB uncompressed
• and need multiple focal planes for some samples
• and JHU hospital produces >400K slides per year (in 1998!)

• Client/server system design
• client runs on user desktop machine – Java GUI
• server stores, retrieves, processes slide image data on parallel 

machine or workstation cluster
• implemented both with Active Data Repository OO framework and 

with DataCutter component framework

CMSC 714 - Alan Sussman 3



Virtual Microscope
• Client provides drag/zoom interface to browse through 

a slide
• use thumbnail to keep track of where you are on a slide
• standalone client can cache image data for improved response 

time – using both memory and disk on client machine
• Server basic computation is map-reduce
• map one or more input pixels at highest resolution to desired 

output resolution, and aggregate if multiple pixels map to 
same output pixel

•Active Data Repository
• user defined functions used for map and reduce, framework 

orchestrates parallel execution across data stored on multiple 
nodes of a cluster or parallel machine
• data blocks distributed across disks for parallel access and are 

indexed for fast retrieval (more important for more complex 
map functions)
• images also need to be decompressed from stored JPEG form 

before map and reduce steps, and clipped to query window
• experiments show that ADR implementation scales well, to 

handle multiple clients, with low overhead
CMSC 714 - Alan Sussman 4



Virtual Microscope
•DataCutter
• component framework for processing large datasets in a 

distributed environment
• filter-stream programming model
• each filter is a component, and filters connected via streams, which 

deliver data buffers between filters
• supports flexible placement of filters, filter replication for load 

balancing (transparent copies)
• VM filter pipeline is: read-data, decompress, clip, zoom, view

• Performance results show that DataCutter
implementation deals better than ADR with load 
balance issues, but ADR can process large queries 
faster from parallel execution of a single query
• for DataCutter, filter placement matters – communication 

between filters adds latency if on different hosts
•Overall performance results for VM show that can 

achieve interactive response times for real slide data, 
on not-too-large server system configurations

CMSC 714 - Alan Sussman 5



Global Weather Simulations

• Combine high performance high-resolution ensemble 
weather simulation with data assimilation
• A coupled application

•And run on Fugaku, the number 2 and previous number 
1 machine on the TOP500
• An ARM CPU-only system, so targeted at a wide range of 

applications, with vector extensions
• Hierarchical storage system, with SSDs (one I/O node for every 

16 compute nodes for high bandwidth) and a Lustre parallel file 
system for capacity

• Bottom line is that the application scales (weakly) to the 
full system (but results mainly shown on part of the 
system), and does a lot of I/O (petabytes per cycle)

CMSC 714 - Alan Sussman 6



NICAM-LETKF
•NICAM is a global cloud-resolving weather prediction 

model
• And can get to high spatial high resolution, with results shown 

down to 3.5km resolution
• Overall application performance is measured in SDPH 

(simulation days per hour of wall clock time), and related work 
has shown performance of similar models at a fraction of SDPH 
(.1-.7 maybe) on large CPU and GPU systems

•Data assimilation via LETKF (local ensemble transform 
Kalman filter) is a method for incorporating observation 
data to get better initial conditions for each round of 
simulation
• The NICAM ensemble simulations with up to 1024 

members run for 9 hours (of simulated time) in a cycle, 
producing output every hour after 3 hours, and the 
output at 6 hours is used in LETKF along with 
observation data to produce input conditions for the 
next cycle

CMSC 714 - Alan Sussman 7



Optimizations

•75% of the time in a DA cycle is in NICAM
• But the bottlenecks are spread throughout the code, so 

lots of separate optimizations needed to improve 
computation and data movement
• Use both SIMD instructions and HBM with an overall goal 

of minimizing bytes/flop
• Use single precision FP for both speed and decrease data 

movement and I/O requirements
• Ensemble computations help with overall accuracy

•Some opts for LETKF too
• Big one is eigensolver optimized for small real symmetric 

square matrices, based on the one for the K computer
• Uses a special matrix layout too, for better use of cache

CMSC 714 - Alan Sussman 8



Performance
• Amount of I/O is very large
• NICAM outputs 1.4PB per cycle, with 104TB used for next cycle of

simulation
• Separate files per process on SSD for best performance

• Performance shown for grid sizes from 56km down to 3.5km, both 
in double and mixed precision, on up to the full Fugaku system 
(131K nodes, 524K PEs) for the DA runs
• Mixed precision runs maybe 1.6x faster than double per cycle for 

NICAM, and DA runs also much faster in mixed precision and scale 
better
• Overall performance is impressive
• 23 PFLOPs for NICAM on 3.5km grid, mixed precision, 256 member

ensemble run on 131K nodes (5.3% of peak performance)
• LETKF does not scale as well, because of all-to-all communication in input 

data redistribution, with results for a 14km grid with mixed precision on 
8K nodes and 1/16 data size running at 0.34 SDPH and about 5.5PFLOPs
• When run together on 3.5km grid, with only an estimated NICAM part (1 

hour of simulated time), get about 0.1 SDPH, 29PFLOPs for NICAM and 
79PFLOPs for DA, but around 80% of total time spent in NICAM

CMSC 714 - Alan Sussman 9


