High Performance Computing Systems (CMSC714)

Lecture 25: Machine Learning and HPC

Abhinav Bhatele

(some mods by Alan Sussman

Presentation and Final report

- Presentations next week most on Tuesday, but at least one on Thursday
- Report due Monday, Dec. 12, 6PM
- Send me slides after your presentation
 - Introduce your project so that it is understandable by a CS/ENG audience
 - Present what you are implementing or evaluating (serial / parallel algorithms)
 - Progress so far
 - Results so far (performance / performance analysis)
- Final report
 - Send me both code and report (PDF or whatever)

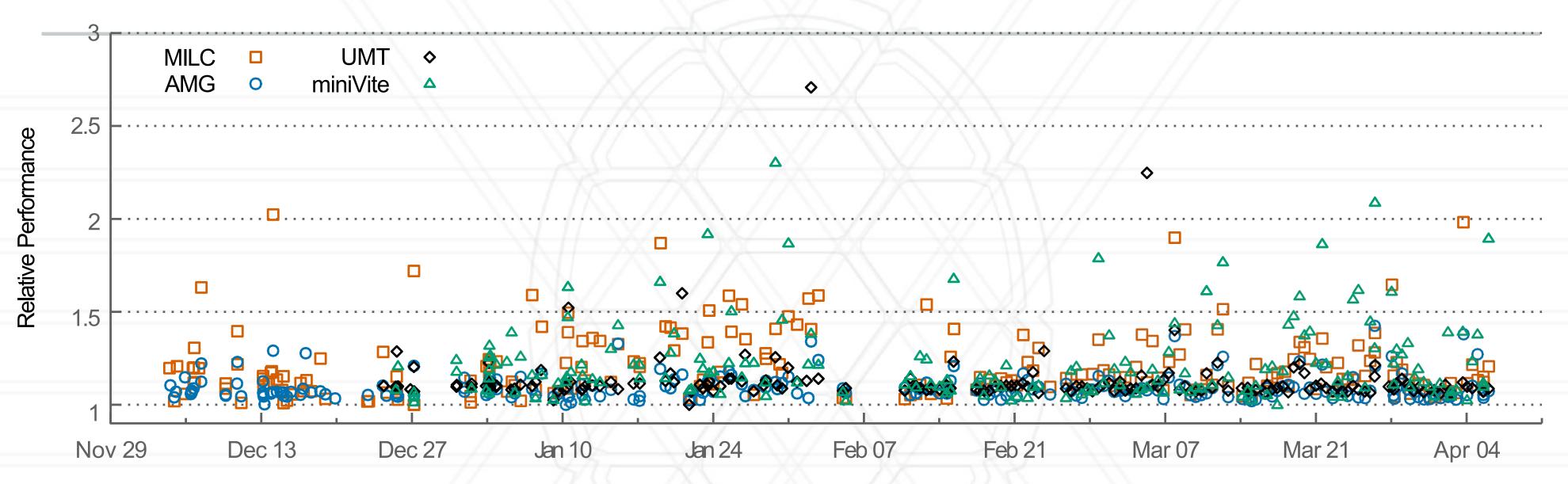
Why machine learning for HPC?

- Proliferation of performance data
 - On-node hardware counters
 - Switch/network port counters
 - Power measurements
 - Traces and profiles
- Supercomputing facilites' data
 - Job queue logs, performance
 - Sensors: temperature, humidity, power

Types of ML-related tasks in HPC

- Auto-tuning: parameter search
 - Find a well performing configuration
- Predictive models: time, energy, ...
 - Predict system state in the future
 - Time-series analysis
- Identifying root causes/factors

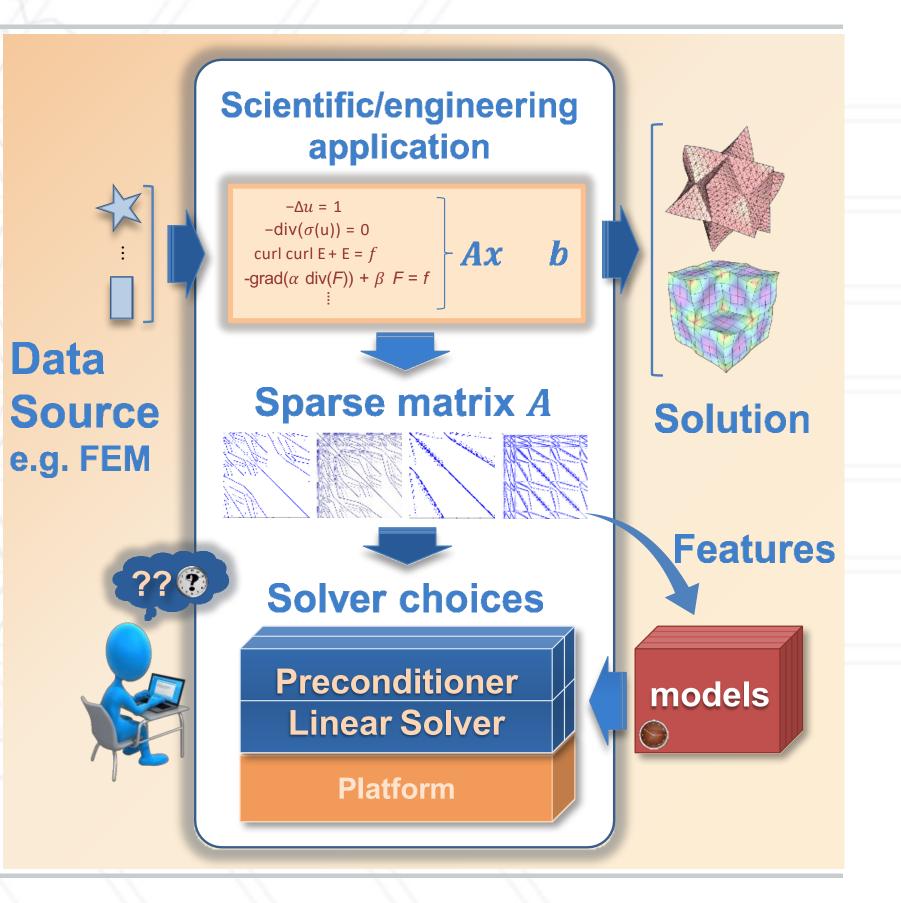
Investigating performance variability

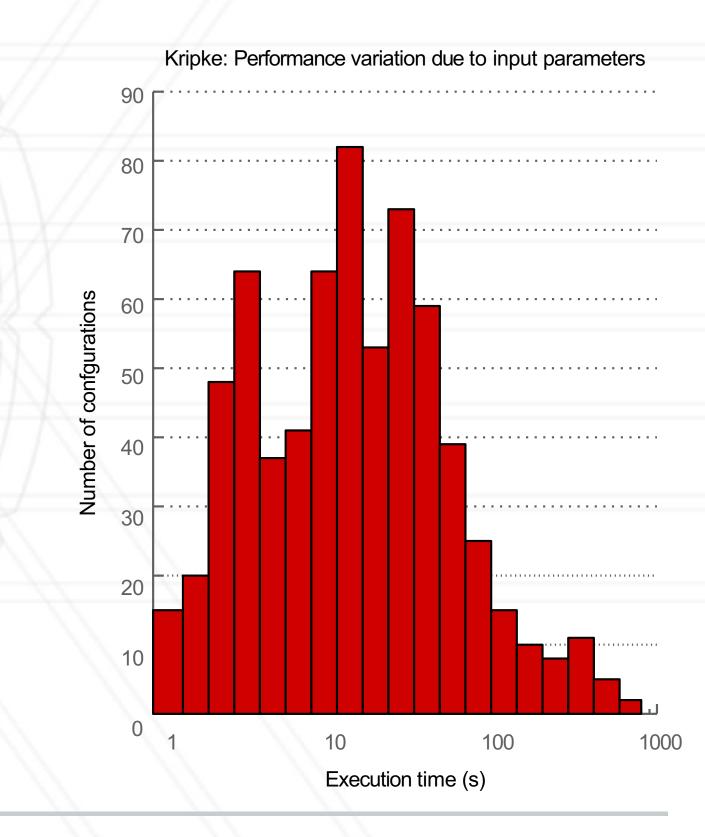


- Identify users to blame, important network counters
- Predict future performance based on historical time-series data

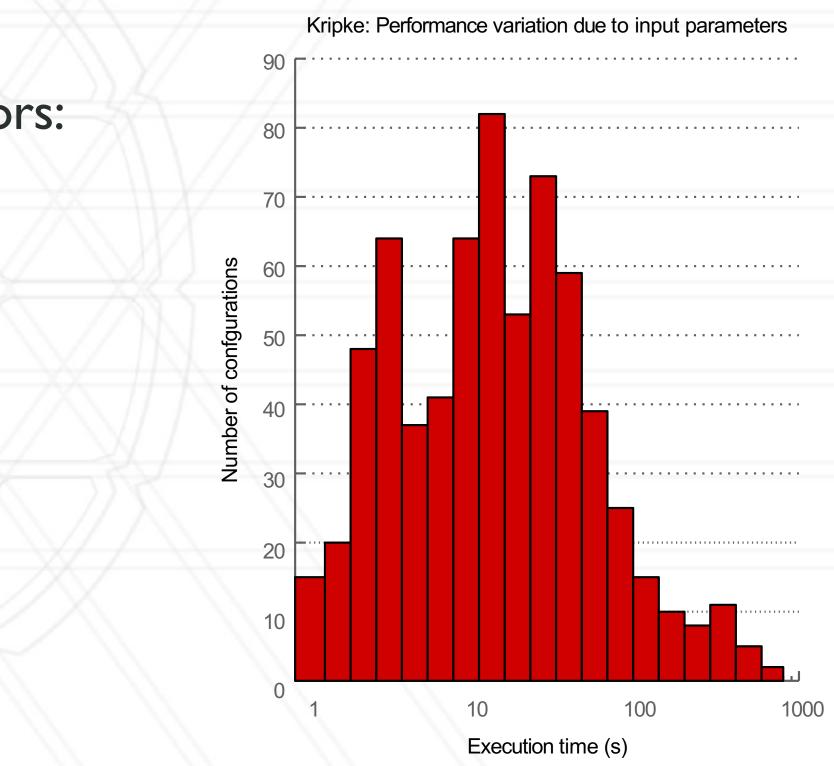
Identifying best performing code variants

- Many computational science and engineering (CSE) codes rely on solving sparse linear systems
- Many choices of numerical methods
- Optimal choice w.r.t. performance depends on several things:
 - Input data and its representation, algorithm and its implementation, hardware architecture

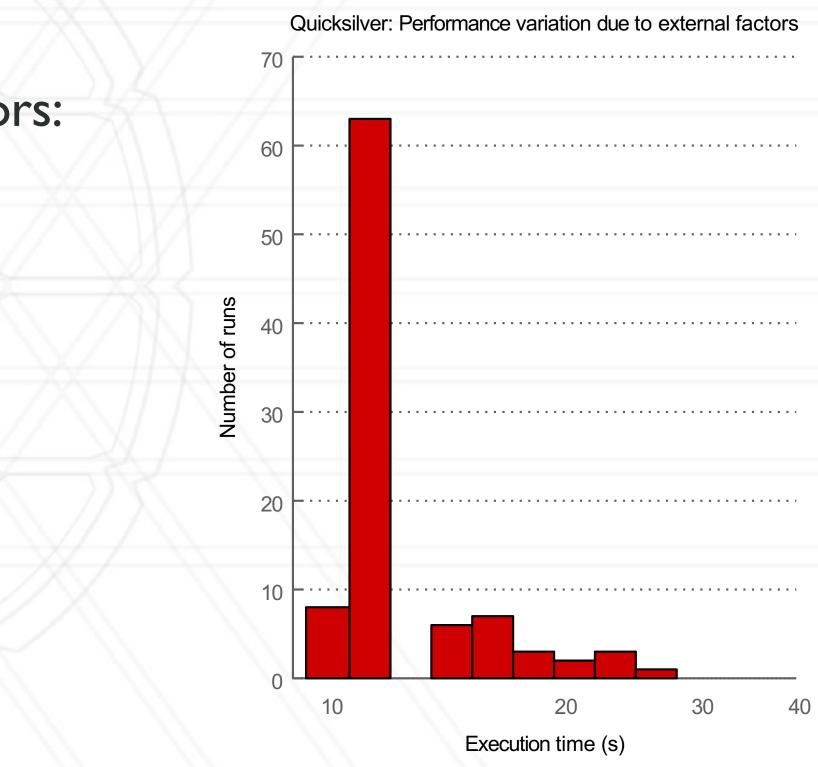




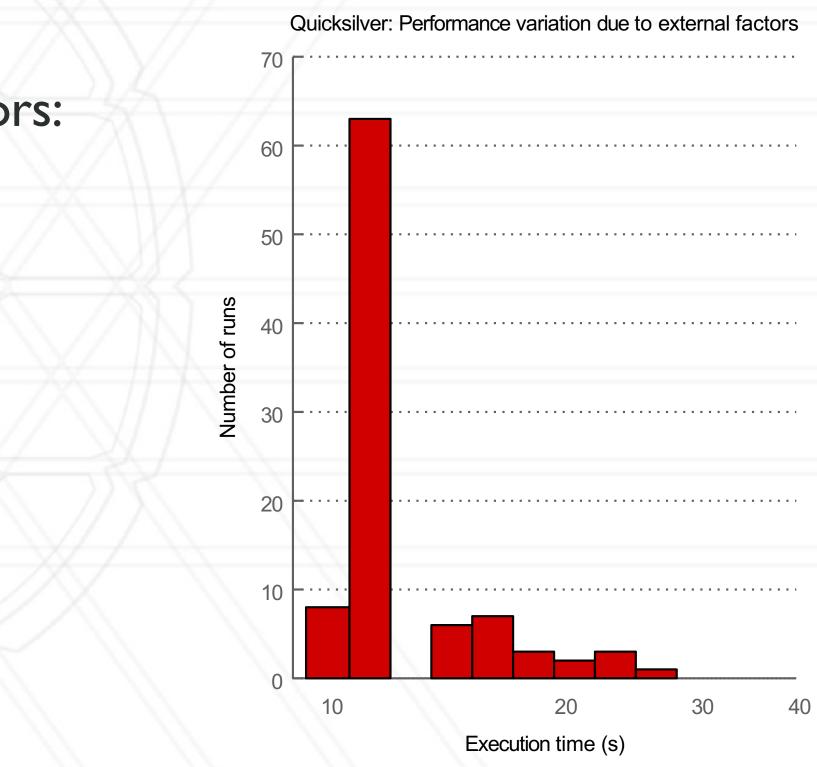
- Application performance depends on many factors:
 - Input parameters, algorithmic choices, runtime parameters



- Application performance depends on many factors:
 - Input parameters, algorithmic choices, runtime parameters
- Performance also depends on:
 - Code changes, linked libraries
 - Compilers, architecture

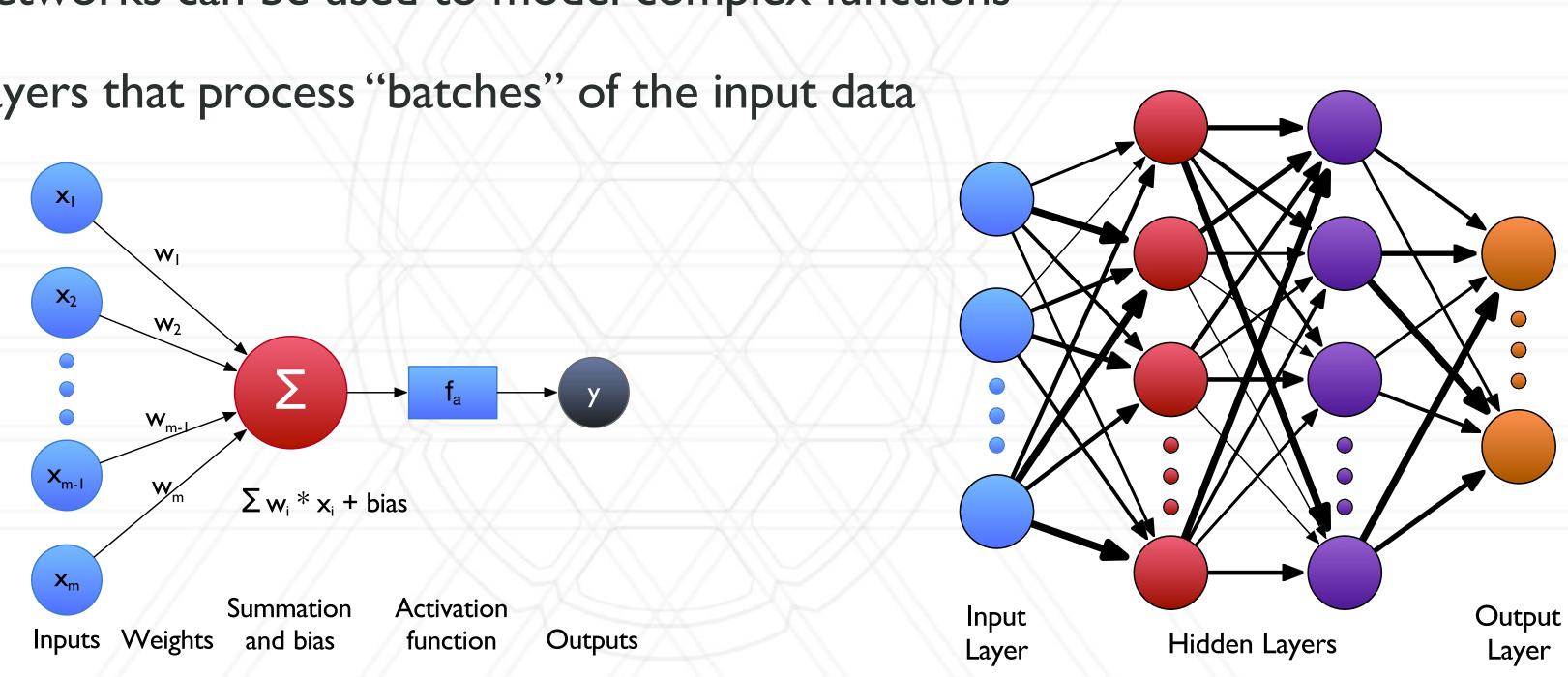


- Application performance depends on many factors:
 - Input parameters, algorithmic choices, runtime parameters
- Performance also depends on:
 - Code changes, linked libraries
 - Compilers, architecture
- Surrogate models + transfer learning



Deep neural networks

- Neural networks can be used to model complex functions
- Several layers that process "batches" of the input data

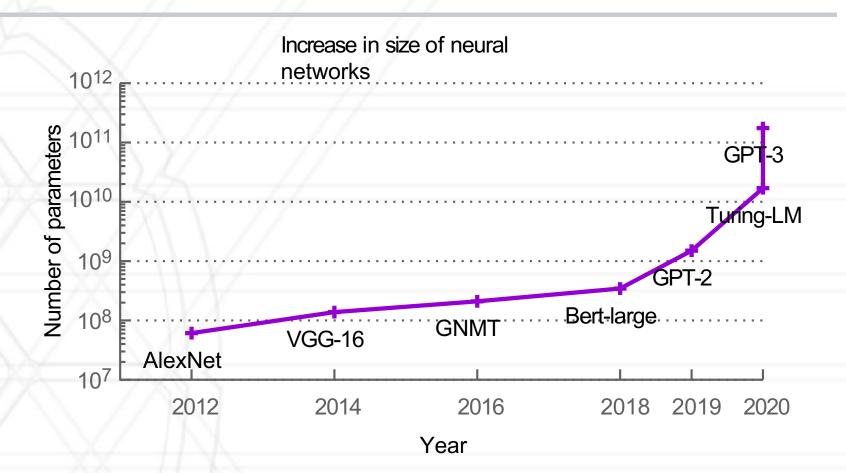


Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (batches)
- Many layers in DNNs

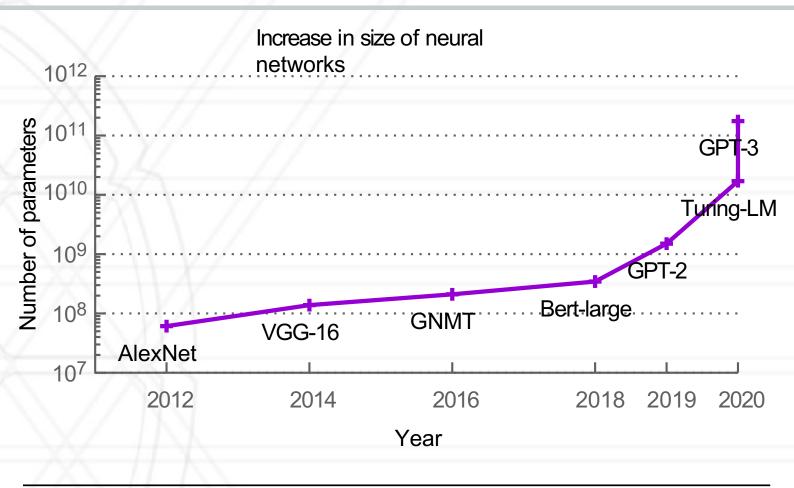
Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (batches)
- Many layers in DNNs



Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (batches)
- Many layers in DNNs



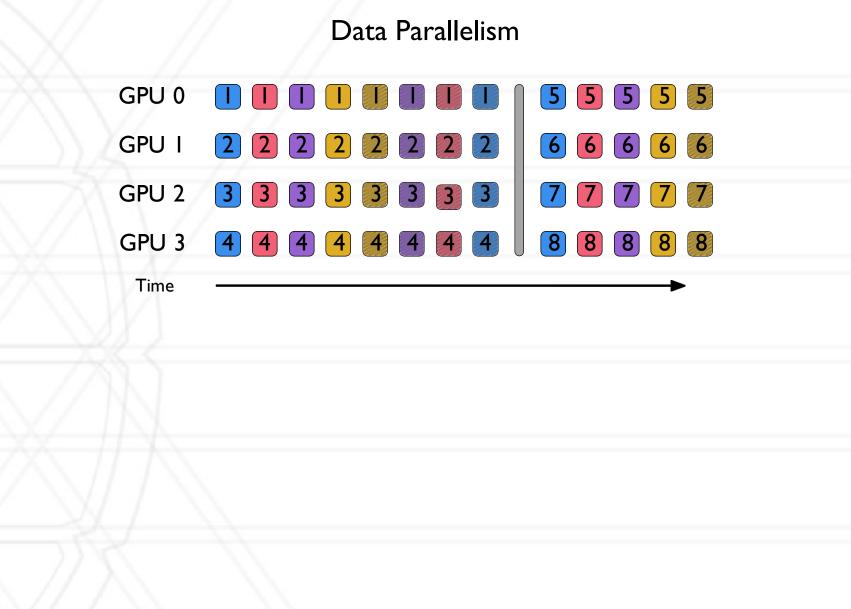
Framework	Type of Parallelism	Largest Accelerator Count	Largest Trained Network (No. of Parameters)
FlexFlow	Hybrid	64 GPUs	24M ⊬
PipeDream	Inter-Layer	16 GPUs	138M
DDP	Data	256 GPUs	345M
GPipe	Inter-Layer	8 GPUs	557M
MeshTensorFlow	Intra-Layer	512-core TPUv2	4.9B
Megatron	Intra-Layer	512 GPUs	8.3B
TorchGPipe	Inter-Layer	8 GPUs	15.8B
KARMA	Data	2048 GPUs	17B
LBANN	Data	3072 CPUs	78.6B
ZeRO	Data	400 GPUs	100B

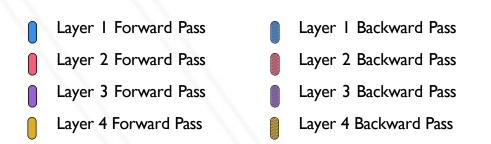
Different approaches

- Data Parallelism: Each process has a copy of the entire NN and processes different data
 - All-reduce operation to synchronize gradients
- Intra-layer Parallelism: Distribute the work within a layer between multiple processes/GPUs
- Inter-layer Parallelism: Distribute entire layers to different processes/GPUs
 - Point-to-point communication (activations and gradients) between processes/GPUs managing different layers

Different approaches

- Data Parallelism: Each process has a copy of the entire NN and processes different data
 - All-reduce operation to synchronize gradients
- Intra-layer Parallelism: Distribute the work within a layer between multiple processes/GPUs
- Inter-layer Parallelism: Distribute entire layers to different processes/GPUs
 - Point-to-point communication (activations and gradients) between processes/GPUs managing different layers





Different approaches

- Data Parallelism: Each process has a copy of the entire NN and processes different data
 - All-reduce operation to synchronize gradients
- Intra-layer Parallelism: Distribute the work within a layer between multiple processes/GPUs
- Inter-layer Parallelism: Distribute entire layers to different processes/GPUs
 - Point-to-point communication (activations and gradients) between processes/GPUs managing different layers

