
Lecture 25: Machine Learning and HPC
Abhinav Bhatele

(some mods by Alan Sussman

High Performance Computing Systems (CMSC714)



Presentation and Final report

CMSC714 - Abhinav Bhatele and Alan Sussman

• Presentations next week – most on Tuesday, but at least one on Thursday

• Report due Monday, Dec. 12, 6PM

• Send me slides after your presentation

• Introduce your project so that it is understandable by a CS/ENG audience

• Present what you are implementing or evaluating (serial / parallel algorithms)

• Progress so far

• Results so far (performance / performance analysis)

• Final report

• Send me both code and report (PDF or whatever)

2



Why machine learning for HPC?

CMSC714 - Abhinav Bhatele and Alan Sussman

• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facilites’ data

• Job queue logs, performance

• Sensors: temperature, humidity, power

3



Types of ML-related tasks in HPC

CMSC714 - Abhinav Bhatele and Alan Sussman

• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors

4



Investigating performance variability

• Identify users to blame, important network counters

• Predict future performance based on historical time-series data

2.5

2

1.5

1

3

Nov 29 Dec 13 Dec 27 Jan10 Jan24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

Re
lat

ive
Pe

rfo
rm

an
ce

MILC 
AMG

UMT
miniVite

CMSC714 - Abhinav Bhatele and Alan Sussman 5



Identifying best performing code variants

• Many computational science and 
engineering (CSE) codes rely on solving 
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends 
on several things:

• Input data and its representation, algorithm and its 
implementation, hardware architecture

⋯

−∆𝑢 = 1
−div(𝜎(u)) = 0 

curl curl E + E = 𝑓
-grad(𝛼 div(F)) + 𝛽 F = f

⁞

Preconditioner 
Linear Solver

Platform

??

models

CMSC714 - Abhinav Bhatele and Alan Sussman 6



Auto-tuning with limited training data

1 10 100 1000

N
um
be
ro
fc
on
fg
ur
at
io
ns

Execution time (s)

Kripke: Performance variation due to input parameters

90

80

70

60

50

40

30

20

10

0

CMSC714 - Abhinav Bhatele and Alan Sussman 7



Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters
60

50

40

30

20

10

0

CMSC714 - Abhinav Bhatele and Alan Sussman

70

80

90

1 10 100 1000

N
um
be
ro
fc
on
fg
ur
at
io
ns

Execution time (s)

Kripke: Performance variation due to input parameters

8



Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

0

10

20

30

40

50

60

70

10 30 40

N
um
be
ro
fr
un
s

20

Execution time (s)

Quicksilver: Performance variation due to external factors

CMSC714 - Abhinav Bhatele and Alan Sussman 9



Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

• Surrogate models + transfer learning

0

10

20

30

40

50

60

70

10 30 40

N
um
be
ro
fr
un
s

20

Execution time (s)

Quicksilver: Performance variation due to external factors

CMSC714 - Abhinav Bhatele and Alan Sussman 10



Deep neural networks

xm-1

• Neural networks can be used to model complex functions

• Several layers that process “batches” of the input data

x1

w1
x2

w2

wm-1

wm

Σ

Σwi * xi + bias

xm

Inputs Weights
Summation 

and bias

fa y

Activation 
function Outputs

Input 
Layer

CMSC714 - Abhinav Bhatele and Alan Sussman

Hidden Layers
Output 
Layer

11



Parallel/distributed training

CMSC714 - Abhinav Bhatele and Alan Sussman

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs

12



Parallel/distributed training
• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs
107

108

109

1010

1011

1012

2012 2014 2018 2019 2020

N
um
be
ro
fp
ar
am
et
er
s

2016

Year

Increase in size of neural
networks

AlexNet

CMSC714 - Abhinav Bhatele and Alan Sussman

VGG-16 GNMT Bert-large
GPT-2

Turing-LM

GPT-3

13



Parallel/distributed training
• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs
107

108

109

1010

1011

1012

2012 2014 2018 2019 2020

N
um
be
ro
fp
ar
am
et
er
s

2016

Year

Increase in size of neural
networks

AlexNet
VGG-16 GNMT Bert-large

GPT-2

Turing-LM

GPT-3

Framework

CMSC714 - Abhinav Bhatele and Alan Sussman

Type of Parallelism
Largest 
Accelerator Count

Largest Trained Network 
(No. of Parameters)

FlexFlow Hybrid 64 GPUs 24M⇤
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B

14



Different approaches

CMSC714 - Abhinav Bhatele and Alan Sussman

• Data Parallelism: Each process has a copy of the 
entire NN and processes different data

• All-reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within 
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to 
different processes/GPUs

• Point-to-point communication (activations and gradients) 
between processes/GPUs managing different layers

15



Different approaches

• Data Parallelism: Each process has a copy of the 
entire NN and processes different data

• All-reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within 
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to 
different processes/GPUs

• Point-to-point communication (activations and gradients) 
between processes/GPUs managing different layers

Data Parallelism

GPU 0 1 1 1 1 1 1 1 1 5 5 5 5 5

GPU 1 2 2 2 2 2 2 2 2 6 6 6 6 6

GPU 2 3 3 3 3 3 3 3 3 7 7 7 7 7

GPU 3

Time

4 4 4 4 4 4 4 4 8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

CMSC714 - Abhinav Bhatele and Alan Sussman 16



Different approaches

• Data Parallelism: Each process has a copy of the 
entire NN and processes different data

• All-reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within 
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to 
different processes/GPUs

• Point-to-point communication (activations and gradients) 
between processes/GPUs managing different layers

Data Parallelism

GPU 0 1 1 1 1 1 1 1 1 5 5 5 5 5

GPU 1 2 2 2 2 2 2 2 2 6 6 6 6 6

GPU 2 3 3 3 3 3 3 3 3 7 7 7 7 7

GPU 3

Time

4 4 4 4 4 4 4 4 8 8 8 8 8

Inter-layer Parallelism with Pipelining

GPU 0 1 2 3 4 1 2 3 4 5 6 7 8

GPU 1 1 2 3 4 1 2 3 4 5 6 7

GPU 2 1 2 3 4 1 2 3 4 5 6

GPU 3 1 2 3 4 1 2 3 4 5

Time

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

CMSC714 - Abhinav Bhatele and Alan Sussman 17


