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Presentation and Final report

® Presentations next week — most on Tuesday, but at least one on Thursday
® Report due Monday, Dec. 12, 6PM

® Send me slides after your presentation
® Introduce your project so that it is understandable by a CS/ENG audience
® Present what you are implementing or evaluating (serial / parallel algorithms)
® Progress so far

® Results so far (performance / performance analysis)

® Final report
® Send me both code and report (PDF or whatever)
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Why machine learning for HPC?

® Proliferation of performance data

® On-node hardware counters
® Switch/network port counters
® Power measurements

® Traces and profiles

® Supercomputing facilites’ data

® Job queue logs, performance

® Sensors: temperature, humidity, power
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Types of ML-related tasks in HPC

® Auto-tuning: parameter search

® Find a well performing configuration

® Predictive models: time, energy, ...

® Predict system state in the future

® Time-series analysis

® Identifying root causes/factors
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Relative Performance

Investigating performance variability
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® Identify users to blame, important network counters

® Predict future performance based on historical time-series data
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ldentifying best performing code variants

® Many computational science and
engineering (CSE) codes rely on solving
sparse linear systems

® Many choices of numerical methods

® Optimal choice w.r.t. performance depends
on several things:

® Input data and its representation, algorithm and its
implementation, hardware architecture
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Auto-tuning with limited training data

Kripke: Performance variation due to input parameters
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Number of confgurations
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Execution time (s)
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Auto-tuning with limited training data

Kripke: Performance variation due to input parameters
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® Application performance depends on many factors:

® Input parameters, algorithmic choices, runtime parameters

Number of confgurations

1 10 100 1000

Execution time (s)
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Auto-tuning with limited training data

Quicksilver: Performance variation due to external factors
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® Application performance depends on many factors:

® Input parameters, algorithmic choices, runtime parameters

® Performance also depends on:

® Code changes, linked libraries

Number of runs

®* Compilers, architecture
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Execution time (s)
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Auto-tuning with limited training data

Quicksilver: Performance variation due to external factors
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® Application performance depends on many factors:

® Input parameters, algorithmic choices, runtime parameters

® Performance also depends on:

® Code changes, linked libraries

Number of runs

®* Compilers, architecture

® Surrogate models + transfer learning
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Execution time (s)
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Deep neural networks

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data

2w, * x. + bias
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Parallel/distributed training

® Many opportunities for exploiting parallelism
® lterative process of training (epochs)
® Many iterations per epoch (batches)

® Many layers in DNNs
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Parallel/distributed training

Increase in size of neural
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® Many layers in DNNs 22

s DEPARTMENT OF :
@ COMPUTER SCIENCE CMSC714 - Abhinav Bhatele and Alan Sussman

Year




Parallel/distributed training

® Many opportunities for exploiting parallelism
® lterative process of training (epochs)
® Many iterations per epoch (batches)

® Many layers in DNNs
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Increase in size of neural
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y ¢ lel: Largest Largest Trained Network
pramew o Type of Parallelism Accelerator Count  (No. of Parameters)
FlexFlow Hybrid 64 GPUs 24M<
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557TM
MeshTensorFlow Intra-Layer 512-core TPUV2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
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Different approaches

® Data Parallelism: Each process has a copy of the
entire NN and processes different data

® All-reduce operation to synchronize gradients

® Intra-layer Parallelism: Distribute the work within
a layer between multiple processes/GPUs

® Inter-layer Parallelism: Distribute entire layers to
different processes/GPUs

® Point-to-point communication (activations and gradients)
between processes/GPUs managing different layers
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Different approaches

Data Parallelism

GPFUO @I @®E®®®m |
GRUI 2222222 @
GPU2 BIBBR338E®
GPRU3 B@@eEEE® |

® Data Parallelism: Each process has a copy of the
entire NN and processes different data

® All-reduce operation to synchronize gradients

Time >
® Intra-layer Parallelism: Distribute the work within
a layer between multiple processes/GPUs
® Inter-layer Parallelism: Distribute entire layers to
different processes/GPUs
® Point-to-point communication (activations and gradients) § LoeriFovardPass  § Layer | Backward Pass
between processes/GPUs managing different layers : s e : o
[] Layer 4 Forward Pass % Layer 4 Backward Pass
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Different approaches

Data Parallelism
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® Data Parallelism: Each process has a copy of the
entire NN and processes different data

® All-reduce operation to synchronize gradients

Time >
® Intra-layer Parallelism: Distribute the work within Inter-tayer Parallelism with Pipelining
a layer between multiple processes/GPUs U0 DO TIIIIIY
Ul DRe® ngee 660
® Inter-layer Parallelism: Distribute entire layers to ~ c™2 Sees Sses ®@©
different processes /GPUs GTF::ei* (D)

Layer | Forward Pass Layer | Backward Pass

® Point-to-point communication (activations and gradients)
between processes/GPUs managing different layers

Layer 2 Forward Pass Layer 2 Backward Pass

Layer 3 Forward Pass Layer 3 Backward Pass
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Layer 4 Forward Pass A Layer 4 Backward Pass
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