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Presentation and Final report

CMSC714 - Abhinav Bhatele and Alan Sussman

• Presentations next week – most on Tuesday, but at least one on Thursday

• Report due Monday, Dec. 12, 6PM

• Send me slides after your presentation

• Introduce your project so that it is understandable by a CS/ENG audience

• Present what you are implementing or evaluating (serial / parallel algorithms)

• Progress so far

• Results so far (performance / performance analysis)

• Final report

• Send me both code and report (PDF or whatever)
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Why machine learning for HPC?
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• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facilites’ data

• Job queue logs, performance

• Sensors: temperature, humidity, power
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Types of ML-related tasks in HPC
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• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors
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Investigating performance variability

• Identify users to blame, important network counters

• Predict future performance based on historical time-series data
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Identifying best performing code variants

• Many computational science and 
engineering (CSE) codes rely on solving 
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends 
on several things:

• Input data and its representation, algorithm and its 
implementation, hardware architecture

⋯

−∆𝑢 = 1
−div(𝜎(u)) = 0 

curl curl E + E = 𝑓
-grad(𝛼 div(F)) + 𝛽 F = f

⁞
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Auto-tuning with limited training data
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Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters
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Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture
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Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

• Surrogate models + transfer learning
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Deep neural networks

xm-1

• Neural networks can be used to model complex functions

• Several layers that process “batches” of the input data
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Hidden Layers
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Layer
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Parallel/distributed training
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• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs
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Parallel/distributed training
• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs
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Parallel/distributed training
• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs
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Type of Parallelism
Largest 
Accelerator Count

Largest Trained Network 
(No. of Parameters)

FlexFlow Hybrid 64 GPUs 24M⇤
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
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Different approaches
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• Data Parallelism: Each process has a copy of the 
entire NN and processes different data

• All-reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within 
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to 
different processes/GPUs

• Point-to-point communication (activations and gradients) 
between processes/GPUs managing different layers
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Different approaches

• Data Parallelism: Each process has a copy of the 
entire NN and processes different data

• All-reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within 
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to 
different processes/GPUs

• Point-to-point communication (activations and gradients) 
between processes/GPUs managing different layers
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Different approaches

• Data Parallelism: Each process has a copy of the 
entire NN and processes different data

• All-reduce operation to synchronize gradients
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a layer between multiple processes/GPUs
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Inter-layer Parallelism with Pipelining
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