CMSC 714
Lecture 26
Anton3 and more Molecular Dynamics

Alan Sussman
Notes

• Final group project report due Monday, December 12, 6PM
Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of motions

• Force calculations
 • Bonded interactions: bonds, angles, dihedrals
 • Non-bonded interactions: van der Waal’s and electrostatic forces

• Number of atoms: thousands to millions

• Simulation step: ~1 femtosecond (10^-15 sec)
Sequential Algorithm

• At every step, calculate forces on each atom
 • Calculate bonded and short-range forces every step
 • Calculate long-range non-bonded forces every few time steps (using PME or P3M etc.)

• Particle mesh Ewald (PME) summation:
 • Calculate long-range interactions in Fourier space

• Calculate velocities and new positions

• Repeat ...
Anton3

• The 3rd generation of special purpose machine built for molecular dynamics simulations, built at D.E. Shaw Research
 • to simulate biological processes that occur on very small time scales (10^{-15} sec), such as protein folding, interaction between proteins, etc.
 • and simulate those processes for a long time, maybe up to 100s of μsec
Anton3

• Many new features, but still most of the computations are mapped to PPIPs (Pairwise Point Interaction Pipelines)
 • But now there are two types, *Big* and *Small*
 • *Big* are for nearby interactions with higher-precision datapaths (23-bit), and also more programmable
 • *Small* are for farther interactions and 14-bit datapaths, with limited types of interaction computations
 • In chip area, 1 Big is same as 3 Small PPIPs
 • And 2 Geometry Cores per node for computations that don’t map onto the PPIPs
 • And a special *Bond* unit per node for ~90% of the bond force computations

• Tiled chip layout allows for more regular routing across units, and a denser design
 • 12 rows by 24 columns Core Tiles for computations
 • Edge Tiles - 96 total, 48 on left and right edges for (serial) connections to other nodes (that also use compression to increase effective bandwidth)

• Claim is that more than 10x energy efficient on MD, in addition to faster time to solution
Anton3

• Performance results show can run large chemical systems (up to millions of atoms) at much higher rates than any previous system, including previous Anton systems and other conventional (CPU/GPU) and special-purpose systems (e.g., MDGrape)
 • can run up to hundreds of microseconds of simulation time per day of wall clock time
 • Over 100 times faster than any other system, including large GPU clusters and supercomputers, with 10x energy efficiency compared to a GPU
 • have run simulated systems up to well over 1000 μseconds even on large molecules with millions of atoms, which showed interesting behavior
 • Have also run multiple concurrent simulations with varying parameters for high throughput
 • E.g., 8 64-node simulations at the same time for an ensemble