
 1

INITIAL VALUE PROBLEM

Comp768: Physically-Based Modeling, Simulation and Animation

Computer Simulation

A computer simulation of a physical system can be considered as the evaluation of the
following function:

This is also known as the initial value problem. The parameter x0 is a vector, which
describes the state of the system you are simulating at a certain initial time, and t is lapse
time from the initial time. The state vector may include many different parameters such as
positions, velocities and temperature of particles depending on the system you simulate.
And the value of the function is the state vector at time t. f is the mathematical model of
the natural laws that govern the system. Because the natural laws should be consistent over
time, we get

For a special case in which we can use a fixed time step Δt, we can recursively call a
function to get results as:

where for any choice of positive integer n. This discrete recursion
is often used for computer simulation.

By the limitation of current digital electric computers, all we can use are 4 arithmetic
operations to implement f. Furthermore, we are allowed to use only a finite number of
operations. As we can see later, it is quite challenging to simulate natural phenomena with
these limitations.

Differential Equation Solution

A Simple Example
Classical dynamics states that the world is governed by differential equations. Let’s see a
very simple example, the one dimensional free fall of a particle:

),(tf ox

)),,((),(baba ttffttf 00 xx =+

 2

particle theof mass is
onaccelerati nalgravitatio is

 paricle theofhieght is
 timeis

where

2

2

m
g
x
t

mgx
dt
dm −=

 (1)

This is an Ordinary Differential Equation (ODE), because it includes only ordinary
differentiation as opposed to other kinds such as partial differentiation. This ODE is
second order because the maximum order of derivative is two.
Now, we want to simulate the behavior of this particle using computers. We immediately
get into problems. Differential equations are defined in continuous space and time. But the
current computer is limited to discrete computation. Computers do not understand
differential operators. It can execute only arithmetic operations finite times. Actually, we
can only hope to get approximate solution.1
Let’s try to apply the discrete recursion to this problem. First of all, we need to define the
state of this system. What state would fully describe a particle like this? It is helpful to
remember what Laplace said 177 years ago:

“If we knew the position and velocities of all the particles in the universe, then we
would know the future for all time, and the past as well.”

Thus, the state we are looking for is the position and velocity of the particle. Let’s denote
them as

x: position
ẋ: velocity

Now, you may wonder why we can treat x and ẋ as if they are independent variables. They
are not. ẋ is time derivative of x. But, we can pretend so if we explicitly state it:

In this way, we can rewrite the previous equation into two equations:

1 Of course, you can integrate equation (1) twice to get a closed form solution of the differential equation

(x(t) = -1/2gt2 + ẋ0t + x0). But closed form solution does not always exist for general differential equation, so let’s pretend
that there is no closed form solution for this case, too.

 3

Equation (2)’s formulation converts the equation (1) into a first order differential equation2.
Next, we discretize the state variables in time dimension.

Δt is a time step. It does not have to be a constant. But for the time being let’s consider
only a fixed time step. i is a nonnegative integer. i = 0 (i.e. t = 0) is the starting time of
the simulation. So, x0 and ẋ0 comprise the initial state.

Now, all we need to do is to find a way to compute (xi+1, ẋi+1) from (xi, ẋi) based on (2).
The simplest way is Euler’s method:

Applying this to (2), we get

The first equation says that if the particle keeps the current velocity ẋi for Δt , it will move
Δtẋi and reach ẋi + Δtẋi. The second equation can be interpreted similarly. If the particle
is under the gravitational acceleration − g for Δt , then the velocity will increase − Δt g .
In this particular case, the acceleration stays constant, so there is no error in the numerical
integration of the acceleration. The numerical integration of velocity, however, is not
accurate because velocity changes during the intervalΔt . We can make Δt very small so
that we can assume constant velocity in the small duration. But an overly small Δt will
cause catastrophic cancellation in floating point computation. Furthermore, a
smallΔt implies many iteration steps, which are not desirable for high performance
computation. We want a nice and large stride for each step.

Runge-Kutta Method
Runge-Kutta method is one of the most widely used numerical integrator for differential
equations. Here we consider the oscillation of a linear spring. It is a little more
complicated example than the free fall of a particle.

particle theof mass is
 paricle theof position horizontal is

 timeis
where

2

2

m
x
t

kxx
dt
dm −=

2 Alternatively we can use only x as state. In this case, we can deduce the current velocity from successive values of x in the

past. We will discuss this method in the boundary value problem section.

 4

v

x
π/2

Solution
of Euler’s
Method

Midpoint

Exact
Solution

Initial
Position

Solution
of Midpoiont
Method

For the sake of simplicity, let’s consider a case in which m=k.

xx
dt
d

−=2

2

We can convert it to a first order ODE:

And let’s pick initial values:

We can easily get the closed form solution:

If we plot (x(t), ẋ(t)) as the advance of t, we get a circular trajectory.
Note also that, at any given point (x, ẋ), we can evaluate the derivatives as (x, -ẋ). In other
words, the derivatives form a 2D vector field in the space (x, ẋ).

Again we consider that we do not know this exact solution, and attempt to solve this in
numerical way. Let’s try Euler’s method with time step Δt = π/2 (≈1.57) (see the figure
below). The exact solution is (x(π/2), ẋ(π/2)) = sin(π/2), cos(π/2))=(1,0). But, Euler’s
method gives us:

This is not very accurate.
The problem is that Euler’s
method ignores the change
of derivatives during the
interval Δt. To get the exact
answer, we need the
average value of
derivatives in the duration.
The midpoint method
approximates the average
by evaluating the
derivatives at half way
between the start point and
the destination point. But,

xx =)2/(π

x

t

 5

because we do not know the destination (it is the answer we are looking for), we must use
the approximation for it. The midpoint method uses the answer of Euler’s method as the
approximate destination point. Let’s see a numerical example.

As shown in the figure, there is great improvement over Euler’s method.
The midpoint method is also called the second order Runge-Kutta method.

It is convenient to use general notation for ODE:

where y is a state vector of a system, and f(y) is a derivative function.
In more general form, f is a function of t as well (i.e. denoted as f(t,y)), but in most cases of
physical simulation, f is independent of time. Therefore t is omitted for the sake of
simplicity.

For example, for the oscillation problem we are solving, y and f are defined as:

Using this notation, the second order Runge-Kutta method can be written in a compact
form:

23.08/0.1)4/()0()2/(
57.12/0.1)0()2/(

is solution final theTherefore
/4)- (1.0,

aremidpoint at the sderivative The

1.0) /4,()
2

1.01.0,
2

/20.0(

ismidpoint edapproximat theSo
1.0) /2,(

is method s Euler'of solution The
1.0) (0.0,

is postion initial The

2 −≈−=Δ×−+=

≈=Δ×+=

=
++

πππ

ππ

π

π
π

π

tvv
txx

)(yy f
dt
d

=

)(
where

)(

)(
)(

3
2
1

tn

tO

ft
ft

Δ=

Δ++=

+Δ=

Δ=

+

yy

kyy

kyk
yk

n

2n1n

1n2

n1

 6

This method is known to have third order local error. That is why O(Δt 3). By evaluating
derivatives at more points, we can get more accurate solution (in most cases). The
following formula is the forth-order Runge-Kutta method.

The local error of the forth-order Runge-Kutta is O(Δt 5). In most cases higher order
implies more accuracy, but it is true only if lower degree terms are dominant (in other word
the function f(y) is sufficiently smooth). We can assume so in many cases because Δt is
smaller than 13. However, if f has a very large coefficient for a higher degree term, the
term would have higher absolute value than lower degree terms. Thus higher order
methods do not guarantee high accuracy in general.

Adaptive Step Size

Now how can we decide an appropriate step size? If the method is integrating a smooth
part of function, a large step size can be safely used, while if it is going through a bumpy
part, the step size must be small.
Our mission is maximizing the step size while keeping the error within preset tolerance.
For each step, we should estimate error. If we find the error is larger than the tolerance, we
must make the step size smaller and integrate the step again. If the error is within the limit,
recompute the step size (make the step size larger), and go on to the next step.

Step doubling is a simple method to estimate error. Let’s see how it works for the forth-
order Runge-Kutta method. First, we take a normal step from t to t+Δt. The error is O(Δt
5), or we can write it as φΔt5+O(Δt 6), where φ is an unknown coefficient4. Therefore

computed solution y1 and the exact solution y(t+Δt) satisfy the following relationship.

Then we divide the step into half, and take two steps. The error of each step is
φ(Δt/2)5+O(Δt 6), so the total error is 2φ(Δt/2)5+O(Δt 6). Denoting the solution by 2 steps
y2 we get

3 What happens if you have Δt larger than 1? For example, if you happen to pick msec for time unit, and your time step is

10msec, would a higher order method have larger errors?

4 By using Taylor expansion, we can show φ is y(5)(t)/5!. It is assumed to be constant around the vicinity of t.

)(
6336

)(
)(
)(

)(

54321
1

34

22
1

3

12
1

tO

ft
ft
ft
ft

nn

n

n

n

n

Δ+++++=

+Δ=

+Δ=

+Δ=

Δ=

+

kkkkyy

kyk
kyk
kyk

yk

2

1

)()(65
1 tOttt Δ+Δ=−Δ+ φyy

)(16/)()2/(2)(6565
2 tOttOttt Δ+Δ=Δ+Δ=−Δ+ φφyy

 7

Subtracting the second equation from the first, we get

Therefore estimated error Δy is obtained as

Given the error tolerance Δymax, the new step size Δtnew should satisfy

Therefore

Thus we can compute the upper bound of the new time step that guarantees the maximum
error Δymax.5

Other ODE Solution Methods

Runge-Kutta method requires many evaluations of derivative per step. The multipoint
methods exploit derivatives of previous steps to achieve higher order accuracy. At each
step, the derivative is evaluated only once. Several derivatives of already determined steps
are interpolated by a polynomial function, and by integrating the polynomial, we can get
the solution of the next step.
Multipoint methods are known to be accurate and computationally less expensive than
Runge-Kutta methods. Multipoint methods use derivatives of a few previous steps, so we
have to use self-starting methods, such as Runge-Kutta methods, to compute those steps.
In physically based simulation that involves frequent collision (or other kind of
discontinuous events), multipoint methods have to be reinitialized many times, which may
undermine the efficiency of this method.

5 Δy and φ are vectors. So the upper bound should be evaluated component wise, and maximum value should be taken.

)()16/15(65
12 tOt Δ+Δ=− φyy

)(
15
16

12
5 yyy −=Δ=Δ tφ

|| 5
max newty Δ>Δ φ

new

new

tty
ei

t
ty

Δ>Δ
Δ

Δ

Δ

Δ
>

Δ

Δ

5/1max

5

5
max

)
||

(

..
||
||

||

y

y φ
φ

