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INITIAL VALUE PROBLEM 

Comp768:  Physically-Based Modeling, Simulation and Animation 

 
Computer Simulation 

A computer simulation of a physical system can be considered as the evaluation of the 
following function: 

 
This is also known as the initial value problem.  The parameter x0 is a vector, which 
describes the state of the system you are simulating at a certain initial time, and t is lapse 
time from the initial time.  The state vector may include many different parameters such as 
positions, velocities and temperature of particles depending on the system you simulate.  
And the value of the function is the state vector at time t.  f is the mathematical model of 
the natural laws that govern the system.  Because the natural laws should be consistent over 
time, we get 

For a special case in which we can use a fixed time step Δt, we can recursively call a 
function to get results as: 

 
 

where  for any choice of positive integer n.  This discrete recursion 
is often used for computer simulation. 
 
By the limitation of current digital electric computers, all we can use are 4 arithmetic 
operations to implement f.  Furthermore, we are allowed to use only a finite number of 
operations.  As we can see later, it is quite challenging to simulate natural phenomena with 
these limitations. 
 
 
Differential Equation Solution 

A Simple Example 
Classical dynamics states that the world is governed by differential equations.  Let’s see a 
very simple example, the one dimensional free fall of a particle: 
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This is an Ordinary Differential Equation (ODE), because it includes only ordinary 
differentiation as opposed to other kinds such as partial differentiation.  This ODE is 
second order because the maximum order of derivative is two. 
Now, we want to simulate the behavior of this particle using computers.  We immediately 
get into problems. Differential equations are defined in continuous space and time.  But the 
current computer is limited to discrete computation.  Computers do not understand 
differential operators. It can execute only arithmetic operations finite times. Actually, we 
can only hope to get approximate solution.1 
Let’s try to apply the discrete recursion to this problem.  First of all, we need to define the 
state of this system.  What state would fully describe a particle like this?  It is helpful to 
remember what Laplace said 177 years ago:  
 

“If we knew the position and velocities of all the particles in the universe, then we 
would know the future for all time, and the past as well.” 

 
Thus, the state we are looking for is the position and velocity of the particle.  Let’s denote 
them as 

x: position 
ẋ: velocity 

 
Now, you may wonder why we can treat x and ẋ as if they are independent variables.  They 
are not.  ẋ is time derivative of x.  But, we can pretend so if we explicitly state it: 
 

 
 
In this way, we can rewrite the previous equation into two equations: 

 

                                                
1 Of course, you can integrate equation (1) twice to get a closed form solution of the differential equation  

(x(t) = -1/2gt2 + ẋ0t + x0).    But closed form solution does not always exist for general differential equation, so let’s pretend 
that there is no closed form solution for this case, too. 
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Equation (2)’s formulation converts the equation (1) into a first order differential equation2. 
Next, we discretize the state variables in time dimension. 
 

 
 
Δt is a time step.  It does not have to be a constant.  But for the time being let’s consider 
only a fixed time step.  i  is a nonnegative integer.  i = 0 ( i.e. t = 0 ) is the starting time of 
the simulation.  So, x0 and ẋ0 comprise the initial state. 
 
Now, all we need to do is to find a way to compute (xi+1, ẋi+1) from (xi, ẋi) based on (2).  
The simplest way is Euler’s method: 

 
Applying this to (2), we get 

 
The first equation says that if the particle keeps the current velocity ẋi for Δt , it will move 
Δtẋi  and reach ẋi + Δtẋi.  The second equation can be interpreted similarly.  If the particle 
is under the gravitational acceleration − g  for Δt , then the velocity will increase − Δt g .  
In this particular case, the acceleration stays constant, so there is no error in the numerical 
integration of the acceleration. The numerical integration of velocity, however, is not 
accurate because velocity changes during the intervalΔt .  We can make Δt  very small so 
that we can assume constant velocity in the small duration.  But an overly small Δt  will 
cause catastrophic cancellation in floating point computation. Furthermore, a 
smallΔt implies many iteration steps, which are not desirable for high performance 
computation.  We want a nice and large stride for each step. 
 
 
Runge-Kutta Method 
Runge-Kutta method is one of the most widely used numerical integrator for differential 
equations.  Here we consider the oscillation of a linear spring.  It is a little more 
complicated example than the free fall of a particle. 
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2 Alternatively we can use only x as state.  In this case, we can deduce the current velocity from successive values of x in the 

past.  We will discuss this method in the boundary value problem  section. 
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We can convert it to a first order ODE: 

 
 
And let’s pick initial values: 

 
 
We can easily get the closed form solution: 

 
 
If we plot (x(t), ẋ(t)) as the advance of t, we get a circular trajectory. 
Note also that, at any given point (x, ẋ), we can evaluate the derivatives as (x, -ẋ). In other 
words, the derivatives form a 2D vector field in the space (x, ẋ). 
 
Again we consider that we do not know this exact solution, and attempt to solve this in 
numerical way. Let’s try Euler’s method with time step Δt = π/2 (≈1.57) (see the figure 
below).  The exact solution is (x(π/2), ẋ(π/2)) = sin(π/2), cos(π/2))=(1,0). But, Euler’s 
method gives us: 

 
 
 
This is not  very   accurate. 
The problem is that Euler’s 
method ignores the change 
of derivatives during the 
interval Δt. To get the exact 
answer, we need the 
average value of 
derivatives in the duration. 
The midpoint method 
approximates the average 
by evaluating the 
derivatives at half way 
between the start point and 
the destination point.  But, 
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because we do not know the destination (it is the answer we are looking for), we must use 
the approximation for it.  The midpoint method uses the answer of Euler’s method as the 
approximate destination point.  Let’s see a numerical example. 

 
As shown in the figure, there is great improvement over Euler’s method. 
The midpoint method is also called the second order Runge-Kutta method. 
 
It is convenient to use general notation for ODE: 

where y is a state vector of a system, and f(y) is a derivative function. 
In more general form, f is a function of t as well (i.e. denoted as f(t,y)), but in most cases of 
physical simulation,  f is independent of time.  Therefore t is omitted for the sake of 
simplicity.  
 
For example, for the oscillation problem we are solving, y and f are defined as: 

 
Using this notation, the second order Runge-Kutta method can be written in a compact 
form: 
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This method is known to have third order local error.  That is why O(Δt 3).  By evaluating 
derivatives at more points, we can get more accurate solution (in most cases).  The 
following formula is the forth-order Runge-Kutta method. 

 
The local error of the forth-order Runge-Kutta is O(Δt 5).  In most cases higher order 
implies more accuracy, but it is true only if lower degree terms are dominant (in other word 
the function f(y) is sufficiently smooth).  We can assume so in many cases because Δt is 
smaller than 13.  However, if f has a very large coefficient for a higher degree term, the 
term would have higher absolute value than lower degree terms.  Thus higher order 
methods do not guarantee high accuracy in general. 
 
Adaptive Step Size 

Now how can we decide an appropriate step size?  If the method is integrating a smooth 
part of function, a large step size can be safely used, while if it is going through a bumpy 
part, the step size must be small. 
Our mission is maximizing the step size while keeping the error within preset tolerance. 
For each step, we should estimate error.  If we find the error is larger than the tolerance, we 
must make the step size smaller and integrate the step again.  If the error is within the limit, 
recompute the step size (make the step size larger), and go on to the next step. 
 
Step doubling is a simple method to estimate error.  Let’s see how it works for the forth-
order Runge-Kutta method.  First, we take a normal step from t to t+Δt.  The error is O(Δt 
5), or we can write it as φΔt5+O(Δt 6), where φ is an unknown coefficient4.  Therefore 

computed solution y1 and the exact solution y(t+Δt) satisfy the following relationship. 
 

Then we divide the step into half, and take two steps.  The error of each step is 
φ(Δt/2)5+O(Δt 6), so the total error is 2φ(Δt/2)5+O(Δt 6).  Denoting the solution by 2 steps 
y2 we get 

 
                                                
3 What happens if you have Δt larger than 1?  For example, if you happen to pick msec for time unit, and your time step is 

10msec, would a higher order method have larger errors?  

4 By using Taylor expansion, we can show φ  is y(5)(t)/5!.  It is assumed to be constant around the vicinity of t. 
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Subtracting the second equation from the first, we get 

 
Therefore estimated error Δy is obtained as  

 
Given the error tolerance Δymax, the new step size Δtnew should satisfy 

 
 
Therefore 

 
Thus we can compute the upper bound of the new time step that guarantees the maximum 
error Δymax.5 
 

Other ODE Solution Methods 

Runge-Kutta method requires many evaluations of derivative per step.  The multipoint 
methods exploit derivatives of previous steps to achieve higher order accuracy.  At each 
step, the derivative is evaluated only once.  Several derivatives of already determined steps 
are interpolated by a polynomial function, and by integrating the polynomial, we can get 
the solution of the next step. 
Multipoint methods are known to be accurate and computationally less expensive than 
Runge-Kutta methods.  Multipoint methods use derivatives of a few previous steps, so we 
have to use self-starting methods, such as Runge-Kutta methods, to compute those steps.  
In physically based simulation that involves frequent collision (or other kind of 
discontinuous events), multipoint methods have to be reinitialized many times, which may 
undermine the efficiency of this method. 
 

                                                
5 Δy  and φ  are vectors. So the upper bound should be evaluated component wise, and maximum value should be taken. 
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