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This document contains a short summary of information about algorithm analysis and data
structures, which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent
limit definition for the standard asymptotic forms. Assume that f and g are nonnegative
functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0,∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) ⪯ g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0,∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) ⪰ g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0,∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c,∃n0,∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c,∃n0,∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c ̸= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑b

i=a 1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1 − 1

c− 1

{
Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑n−1

i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =
(n− 1)c(n+1) − ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n∑
i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be
analyzed using the so-called Master Theorem, which states that given constants a > 0, b > 1,
and d ≥ 0, the function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =


O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a.



Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote
the set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken
from [m]. A sorting algorithm is stable if it preserves the relative order of equal elements. A
sorting algorithm is in-place if it uses no additional array storage other than the input array
(although O(log n) additional space is allowed for the recursion stack). The comparison-based
algorithms (Insertion-, Merge-, Heap-, and QuickSort) operate under the general assumption
that there is a comparator function f(x, y) that takes two elements x and y and determines
whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No

RadixSort Integers
[m]k or
[mk]

O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes

MergeSort
Total order O(n log n) O(n)

Yes No
HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is
in-place but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally
ordered domain) can be computed in O(n) time.

Useful Data Structures: All these data structures use O(n) space to store n objects.

Unordered Dictionary: (by randomized hashing) Insert, delete, and find in O(1) expected
time each. (Note that you can find an element exactly, but you cannot quickly find its
predecessor or successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predeces-
sor, successor, merge, split in O(log n) time each. (Merge means combining the contents
of two dictionaries, where the elements of one dictionary are all smaller than the ele-
ments of the other. Split means splitting a dictionary into two about a given value x,
where one dictionary contains all the items less than or equal to x and the other contains
the items greater than x.) Given the location of an item x in the data structure, it is
possible to locate a given element y in time O(log k), where k is the number of elements
between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease-key, increase-
key in O(log n) time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Any sequence of n insert, extract-min, union, decrease-
key can be done in O(1) amortized time each. (That is, the sequence takes O(n) total
time.) Extract-min and delete take O(log n) amortized time. Make-heap from n keys in
O(n) time.



Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint
sets and find the set containing an element in O(log n) time each. A sequence of m
operations can be done in O(α(m,n)) amortized time. That is, the entire sequence can
be done in O(m · α(m,n)) time. (α is the extremely slow growing inverse-Ackerman
function.)

Orientation Testing: For any constant dimension d, given any ordered (d + 1)-tuple of points
in Rd, it can be determined in O(1) time whether these points are (a) negatively oriented
(clockwise), (b) positively oriented (counterclockwise) or (c) affinely dependent (collinear).
This test can be applied for many other geometric predicates, such as determining whether
two given line segments in the plane intersect, whether a given point lies within a given
triangle, and whether a given point lies within the circumcircle of three other given points.
(This will be discussed later in the semester.)


