
CMSC 754: Fall 2023 Dave Mount

CMSC 754: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data
structures, which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent
limit definition for the standard asymptotic forms. Assume that f and g are nonnegative
functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) ⪯ g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) ⪰ g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c, ∃n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c, ∃n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c ̸= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑

b

i=a
1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑

n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑

n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1 − 1

c− 1

{

Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑

n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑

n−1
i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =

(n− 1)c(n+1) − ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n
∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+

1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be
analyzed using the so-called Master Theorem, which states that given constants a > 0, b > 1,
and d ≥ 0, the function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote
the set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken
from [m]. A sorting algorithm is stable if it preserves the relative order of equal elements. A
sorting algorithm is in-place if it uses no additional array storage other than the input array
(although O(log n) additional space is allowed for the recursion stack). The comparison-based

algorithms (Insertion-, Merge-, Heap-, and QuickSort) operate under the general assumption
that there is a comparator function f(x, y) that takes two elements x and y and determines
whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No

RadixSort Integers
[m]k or
[mk]

O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes

MergeSort
Total order O(n log n) O(n)

Yes No
HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is
in-place but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally
ordered domain) can be computed in O(n) time.

Useful Data Structures: All these data structures use O(n) space to store n objects.

Unordered Dictionary: (by randomized hashing) Insert, delete, and find in O(1) expected
time each. (Note that you can find an element exactly, but you cannot quickly find its
predecessor or successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predeces-
sor, successor, merge, split in O(log n) time each. (Merge means combining the contents
of two dictionaries, where the elements of one dictionary are all smaller than the ele-
ments of the other. Split means splitting a dictionary into two about a given value x,
where one dictionary contains all the items less than or equal to x and the other contains
the items greater than x.) Given the location of an item x in the data structure, it is
possible to locate a given element y in time O(log k), where k is the number of elements
between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease-key, increase-
key in O(log n) time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Any sequence of n insert, extract-min, union, decrease-
key can be done in O(1) amortized time each. (That is, the sequence takes O(n) total
time.) Extract-min and delete take O(log n) amortized time. Make-heap from n keys in
O(n) time.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint
sets and find the set containing an element in O(log n) time each. A sequence of m
operations can be done in O(α(m,n)) amortized time. That is, the entire sequence can
be done in O(m · α(m,n)) time. (α is the extremely slow growing inverse-Ackerman
function.)

Orientation Testing: For any constant dimension d, given any ordered (d + 1)-tuple of points
in R

d, it can be determined in O(1) time whether these points are (a) negatively oriented
(clockwise), (b) positively oriented (counterclockwise) or (c) affinely dependent (collinear).
This test can be applied for many other geometric predicates, such as determining whether
two given line segments in the plane intersect, whether a given point lies within a given
triangle, and whether a given point lies within the circumcircle of three other given points.
(This will be discussed later in the semester.)

CMSC 754: Fall 2023 Dave Mount

Homework 1: Convex Polygons and Plane Sweep

Handed out Tuesday, Sep 12. Due by the start of class on Thursday, Sep 21. (Submissions will
be through Gradescope. Submission information will be forthcoming.) Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed
by the due date. Unless otherwise specified, you may assume that all inputs are given in general

position. Listed point values are subject to change.

Problem 1. (10 points) You are given a set of four points in the plane {p1, . . . , p4}, where pi =
(xi, yi).

(a) (5 points) Present an efficient boolean function quadSeq(p1, p2, p3, p4) (in pseudocode)
that determines whether this sequence of points define the vertices of a convex quadri-
lateral in cyclic order (either clockwise or counterclockwise).

(b) (5 points) Present an efficient boolean function quadSet(p1, p2, p3, p4) (in pseudocode)
that determines whether this set of points define the vertices of a convex quadrilateral
in any order.

In this problem you may not assume that points are in general position. If any three points
are collinear, then both of the above functions should return false (see Fig. 1 for some
examples.)

quadSeq(p1, p3, p4, p2) → true

p1

p3

p4

p2

p4

p1

p2

p3

p3

p2

p1

p4

quadSeq(p4, p3, p1, p2) → true

All quadSet calls return true

quadSeq(p1, p4, p3, p2) → false

All quadSet calls return false

All quadSeq calls return false

Figure 1: Examples of return results for quadSeq and quadSet.

As with any procedure, you may create variables to store intermediate values or define addi-
tional subroutines. Explain how your procedure works in English and justify its correctness.
For full credit, your procedure should be based solely on orientation tests involving these
four points. (E.g., a comparison of the form “if (orient(p1, p2, p4) < 0)” is valid, but
“if (x1 < x2)” is not.) You should not invoke any convex hull algorithms (like Graham’s
algorithm). Try to do it with the smallest possible number of orientation tests. In each case,
indicate how many orientation tests your procedure makes in the worst case.

Hint: Your answer to (b) is allowed to invoke your answer to (a). For quadSet, I think that
a good way to start would be to fix two points, say p1 and p2, and check whether the other

1

two points share the same orientation with respect to them, that is, “if (orient(p1, p2,

p3) == orient(p1, p2, p4))”.)

Problem 2. (15 points) Define a chord of a convex polygon to be any line segment pq where p

and q are points on P ’s boundary (see Fig. 2(a)). Given a convex polygon P , we say that a
parallelogram Q circumscribes P if it tightly encloses P . That is, P is contained within Q,
and each of Q’s sides touches P (see Fig. 2(b)). If Q circumscribes P , then for each pair of
parallel sides of Q, there will be at least one chord common to both P and Q that is incident
to the these two sides (as with pq in Fig. 2(b)). This is called a common chord.

A circumscribing parallelogram is perfect if for each pair of parallel sides of Q, there is a
common chord incident to these two sides that is parallel to Q’s other sides (see Fig. 2(c)).
A circumscribing parallelograpm is half-perfect if there exists one such chord (see Fig. 2(d)).

(c)(a)

Q

PP

p
q

q′

p′

p

q

(b)

x

y

(d)

p q

Q

P
P

Q

p

q

Figure 2: (a) A chord, (b) circumscribing parallelogram and common chords, (c) a perfect paral-
lelogram (where chords pq and p′q′ are parallel to Q’s sides), and (d) a half-perfect parallelogram
for P .

(a) (5 points) Prove that for any convex polygon P , there exists a half-perfect parallelogram
where two of its sides are horizontal (that is, parallel to the x-axis) and the common
chord is also horizontal (see Fig. 2(c)).

(Hint: Two approaches come to mind. One is based on varying the slopes of the non-
horizontal sides of the parallelogram and showing that some slope yields a horizontal
common chord. The other is based on varying the y-coordinate of the horizontal chord
of P and showing that for some y-value, there a parallelogram that shares this chord.)

(b) (2 points) Prove that if P is in general position, the half-perfect parallelogram is unique.
We will accept either of two answers. First, you can prove that multiple common chords
(even if there is a unique half-perfect parallelogram) implies a violation of general posi-
tion, or second, you can prove that multiple half-perfect parallelograms (even if there is
a unique common chord) implies a violation of general position.

(c) (8 points) Present an O(n) time algorithm which given a convex polygon P in general
position, computes the half-perfect parallelogram described in parts (a) and (b). (If you
can see how to do this faster, check out the Challenge Problem)

Problem 3. (10 points) The objective of this problem is to explore a natural adaptation of the
notion of convex hulls to rectilinear objects. An axis-parallel rectangle is formally defined as

2

the Cartesian product of two nonempty, closed intervals, one along the x-axis and one along
the y-axis, that is r = [a, b]× [c, d], where a < b and c < d (see Fig. 3(a)).

You are given a collection of n axis-parallel rectangles in the plane R = {r1, . . . , rn}, where
ri = [ai, bi]× [ci, di]. Let R denote the union of these rectangles, that is, R =

⋃
n

i=1
ri. It will

be convenient to assume that R is path connected, which means that any two points p, q ∈ R
are connected by a path that lies entirely within R (see Fig. 3(b)).

(c)(a) (b)

c

d

a b

r = [a, b]× [c, d]

p

q

x

y

staircase curve

Figure 3: (a) An axis-parallel rectangle, (b) a path-connected set of rectangles, and (c) the orthog-
onal hull and one of its southeast staircase curve.

We say that a set H is orthogonally convex if the intersection of any horizontal or vertical
line with H is either empty or a single line segment. The orthogonal hull of a set is defined
to be the smallest orthogonally convex set that contains the set (see Fig. 3(c)).

(a) (8 points) Present an efficient algorithm which, given a set R = {r1, . . . , rn} of axis-
parallel rectangles, computes the orthogonal hull of R. The output of your algorithm
consists of a counterclockwise sequence of edges that form the boundary of the hull.
You may assume that the rectangles are in general position (and in particular, no two
rectangles share the x- or y-coordinates) and their union is path connected. Explain
your algorithm and derive its running time.

(Hints: It is a fact (which you do not need to prove) that the boundary of the orthogonal
hull of a path-connected set of orthogonal rectangles can be divided into four “staircase
curves”, connecting the leftmost and rightmost vertical edges with the top and bottom
horizontal edges (see Fig. 3(c)). Present an algorithm to build any one of these staircase
curves, and argue that the others follow from symmetry. Finally, combine the four
staircases to form the final output. Try plane sweep. You should aim for an overall
running time of O(n log n).)

(b) (2 points) In the problem description, we made the convenience assumption that R is
path connected. Show (by giving an example and an explanation) that if this were not
true, the orthogonal hull might consist of multiple connected components.

Problem 4. (15 points) We are given a set of axis-parallel rectangles R = {r1, . . . , rn} in the plane,
where ri = [ai, bi] × [ci, di]. All the rectangles lie within a horizontal strip S = {(x, y) | 0 ≤
y ≤ 1} (see Fig. 4(a)).

In this application we imagine that water is flowing along the “stream” S from left to right,
and it must flow around the rectangular “rocks” of R. The question is whether any water

3

can make it through, or do the rocks effectively block all the flow. Present an algorithm
which, given R, returns true or false, depending on whether there exists a x-monotone
path through S that avoids all the rectangles of R. (Such a path does exist in the example
of Fig. 4(b) but not in the case of Fig. 4(c)).

Present an efficient algorithm that solves the problem. You may make the general position
assumption that, except for y = 0 and y = 1, no two rectangles have the same x- or y-
coordinates. Explain your algorithm and derive its running time. (Hint: Use plane sweep.
Aim for a running time of O((n + m) log n), where m is the total number of edge-to-edge
intersections among the sides of the rectangles. I believe that it is possible to improve this to
O(m+n log n), but you make need to make some additional assumptions about your ordered
dictionary.)

(a) (b)

y = 1

y = 0

(c)

Not allowed.

Must be
x-monotone

Figure 4: Does there exist an x-monotone path that avoids all the rectangles?.

Challenge Problem 1: Show that it is possible to solve Problem 2(c) in sublinear time. Explain
your algorithm and derive its running time.

Challenge Problem 2: Given a convex polygon P , let Q be a parallelogram of minimum area
that encloses P . Prove that Q must be perfect. (Hint: Show how to perturb any non-perfect
parallelogram to form a new parallelogram enclosing P but with smaller area.)

Challenge Problem 3: Can you solve Problem 4 inO(n log n) time, irrespective ofm? (I honestly
do not know, so this may be quite challenging!)

4

Some tips about writing algorithms: Throughout the semester, whenever you are asked to
present an “algorithm,” you should present three things: the algorithm, an informal proof of its
correctness, and a derivation of its running time. Remember that your description is intended
to be read by a human, not a compiler, so conciseness and clarity are preferred over technical
details. Unless otherwise stated, you may use any results from class, or results from any standard
textbook on algorithms and data structures. (If the source is from outside of class, you must cite
your sources.) Also, you may use results from geometry that: (1) have been mentioned in class,
(2) would be known to someone who knows basic geometry or linear algebra, or (3) is intuitively
obvious. If you are unsure, please feel free to check with me.

Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are en-
couraged to use intuition and give illustrations whenever appropriate. Beware, however, that a
poorly drawn figure can make certain erroneous hypotheses appear to be “obviously correct.”

Throughout the semester, unless otherwise stated, you may assume that input objects are in
general position. For example, you may assume that no two points have the same x-coordinate,
no three points are collinear, no four points are cocircular. Also, unless otherwise stated, you
may assume that any geometric primitive involving a constant number of objects each of constant
complexity can be computed in O(1) time.

5

CMSC 754: Fall 2023 Dave Mount

Homework 2: LP, Point Location, and Voronoi Diagrams

Handed out Tuesday, Oct 3. Due: 9:30am, Tuesday, Oct 17 (submission through Gradescope).
No late homeworks will be accepted, so please turn in whatever you have completed by the due
date. Unless otherwise specified, you may assume that all inputs are given in general position. Also,
when asked to give an algorithm with running time O(f(n)), it is allowed to give a randomized

algorithm with expected running time O(f(n)).

Problem 1. (20 points) Explain how to solve each of the following problems in linear (expected)
time. Each can be modeled by reduction to linear programming (LP), perhaps involving
multiple instances along with some additional pre- and/or post-processing. See the remarks
at the end of the homework on how to present LP reductions.

Note that both problems involve obstacle avoidance. We allow the trajectory to pass through
the boundary points of the obstacles. (This is necessary for LP, since it assumes that the
constraints are closed halfspaces.)

(a) (10 points) In your new career as a professional miniature golf player, you are working
on a program to compute your best initial shot on a tricky hole. Let’s model this
as a rectangle of height w and length ℓ whose lower left coordinate is the origin (see
Fig. 1(a)). There are a series of line segment obstacles that need to be avoided, each
growing perpendicularly out from one of the rectangle’s sides. The input consists of
points A = {a1, . . . , am} and B = {b1, . . . , bn} (both unsorted), where ai = (ai,x, ai,y),
and bj = (bj,x, bj,y). The points of A are the endpoints of the segments ascending up
from the rectangle’s bottom edge and the points of B are the endpoints of the segment
descending from the top edge. The ball must travel from the left edge to the right edge
of the rectangle without intersecting any of the obstacles (see Fig. 1(b)).

(a)

w

ℓ

aibj
c d

(b)

Figure 1: Miniature golf.

The final trajectory of the shot is given by two scalars, c and d, which denote the y-
coordinates along the rectangle’s left and right sides, respectively, through which the ball
passes (see Fig. 1(a) lower). You do not expect to hit the hole on the first shot. Instead,
you objective is to get the ball as close to the center as possible. In particular, you want
the value of d where the ball exits the rectangle to be as close to w/2 as possible.

Present an algorithm which determines whether a straight-line path exists from the
left to right edge of the rectangle that avoids all the obstacles. If such a path exists,
determine the trajectory that places d as close as possible to w/2. Your algorithm should
run in expected time O(m+ n).

1

(b) (10 points) After your golf career failed, you turn to (indoor) tennis. You want to
determine how best to hit a lob shot, which travels high enough to avoid the players on
the other side of the net but low enough to avoid hitting lighting fixtures hanging from
the ceiling. Let’s just consider the problem in two-dimensional space, where the floor is
the x-axis, and the y-axis is vertical (see Fig. 2(a)). The lob needs to clear the net, which
is of height h along the y-axis. The lob needs to pass above positions likely occupied by
the opposing player, which are given as a set of points P = {p1, . . . , pm}, and it must
pass below a set of locations of light fixtures Q = {q1, . . . , qn}, where pi = (pi,x, pi,y),
and qj = (qj,x, qj,y). (Both sets are unsorted.) Finally, it needs to land within the court,
which is of length ℓ.

(b)
ℓ

h

qj
pi

(a)
ℓ

h

net

Figure 2: Tennis.

By standard physics, the shot will travel along a parabolic path, given by the equation
y = −gx2 + bx + c of a parabola, where g is a fixed positive constant determined by
the force of gravity (e.g., 32 ft/sec2), and reals b and c are based on the initial location,
direction, and speed with which the ball is hit. Present an algorithm which determines
whether it is possible to find real values b and c to satisfy all the following requirements
(see Fig. 2(b)). The ball’s trajectory must:

(a) pass above the net of height h along the y-axis

(b) pass above all the opposing player points in P

(c) pass below all the lighting fixture points in Q

(d) land on the ground within the court (within distance ℓ of the net)

If such a shot is exists, return the one that travels as high as possible above the net
along the y-axis. Your algorithm should run in expected time O(m+ n).

Problem 2. (10 points) Consider the segments shown in Fig. 3.

(a) (2 points) Show the (final) trapezoidal map for these segments, assuming they are in-
serted in the order ⟨s1, s2, s3⟩. (We have given you the map after inserting the first two
segments, so you only need to show the result after inserting s3.)

(b) (8 points) Show the point-location data structure resulting from the construction given
in class, assuming the insertion order from part (a). (We have given you the point-
location data structure after inserting s1 and s2, so you only need to show the result
after inserting s3.) We will give partial credit if your data structure works correctly,
even though it does not match the construction given in class.

2

p1

t1

p2 t2

s1

s2
A

B

C
F

D E
G

s2

p2

A

B

C

D F

s1

E

s2 G

t1

p1

t2

B
p1

t1

p2 t2

s1

s2

p3
t3

s3

(a) (c)(b)

Figure 3: Trapezoidal map and point location.

Please follow the convention given in class for the node structure. (In particular, for
y-nodes, the left (resp., right) child corresponds to the region above (resp., below) the
segment.)

Problem 3. (10 points) After your tennis career failed, you have decided to return to miniature
golf. Given the same hole structure as in Problem 1(a), you want to know which obstacle
your ball will hit first for a given shot.

The setup is the same as before. The input consists of a w × ℓ rectangle with origin at the
lower-left corner and point sets A and B defining the lower and upper obstacle endpoints, of
sizes m and n, respectively, where ai = (ai,x, ai,y), and bj = (bj,x, bj,y) (see Fig. 4(a)).

(a)

bj

y = 0

y = w

ai

(b)

bj

c u
ai

(c)

bj
ai

c u

c u

Figure 4: Golf shooting queries.

Your golf shot is determined by two quantities (see Fig. 4(a))

❼ the y-coordinate c along the left edge of the rectangle where your shot starts, and

❼ a directional vector u = (ux, uy) of a ray along which the shot travels.

Your objective is to preprocessA andB into a data structure so that given the triple (c, ux, uy),
you can efficiently determine which obstacle is hit first (or if no obstacle is hit, does the ball hit
the upper, lower, or right side of the rectangle). You may assume that 0 ≤ c ≤ w and ux > 0.
Your data structure should use O(n+m) space and answer queries in time O(log(n+m)). It
suffices to just explain how the reduction is performed and justify its correctness, query time,
and space requirements. (You do not need to explain how to compute the segments nor how
to construct the point-location data structure.)

3

Hint: Begin by extracting the equation for the line ℓ carrying the query ray. Then show
that by applying duality, this problem can be reduced to a point-location in R

2 where the
segments are determined by the obstacle vertices A and B. Although I believe you can do
this with one data structure, it may be simpler to describe two data structures, one for A
and the other for B, and then combine the results.

Problem 4. (10 points) It is sometimes of interest to compute the Voronoi diagram of a set of
sites, but we are only interested in a portion of the final diagram. In this problem, we’ll
consider how to compute the Voronoi diagram of a set of points in R

2, but restricted to a
given line ℓ. By rotating and translating space, we may assume that ℓ is aligned with the
x-axis.

You are given a sequence of n sites in the plane P = ⟨p1, . . . , pn⟩ sorted in increasing order of
their x-coordinates (see Fig. 5(a)). Present an algorithm that computes the Voronoi diagram
of P , but restricted only to x-axis. (We don’t care about the portion of the diagram lying
above or below the axis.)

Observe that the diagram is a sequence of intervals that subdivide the x-axis. The output
consists of a sequence of (at most n−1) endpoints of the segments ⟨x1, . . . , xm⟩, and each edge
is labeled with the index of the associated site corresponding to this interval (see Fig. 5(b)).
Your algorithm should run in O(n) time. (Hint: Start by proving that the left-to-right order
of the labels along the x-axis is consistent with the left-to-right order of the sites.)

(a) (b)

ℓ1 4 7 8 10 11

ℓ
p1

p2

p3

p5

p4

p6

p7 p8
p10

p9

p11

p12

x1 x3 x5x2 x4

Output

Figure 5: Restriction of a Voronoi diagram to a line.

Challenge Problem. You are given a collection of n nonintersecting circular disks in the plane,
each of radius r1 called obstacles. Let P = {p1, . . . , pn} denote their center points. You are
also given a radius value r2 and two points s and t (see Fig. 6(a)).

Present an efficient algorithm which, given the obstacles along with s, t, and r2, determines
whether it is possible to move the disk of radius r2 from s to t without intersecting any of
the obstacle disks (see Fig. 6(b)). Ideally, your algorithm should run in O(n log n) time. If
there does not exist such a path (including the case where the initial or final positions are
invalid), then indicate this. Otherwise, your algorithm should output any such path, say, as
a polygonal chain from s to t. (Hint: Use Voronoi diagrams.)

Guidance for Writing LP Reductions: In an linear programming (LP) reduction, you should
explain the following:

4

(a) (b)

s t
r2

s t

Figure 6: Can you move a disk of radius r2 from s to t while avoiding the obstacles?

❼ how the solution space is modeled as a vector (and in what dimension),

❼ what are the constraints,

❼ what is the objective function (and express it as a vector)

❼ how to interpret the result (including the cases feasible, unbounded, infeasible)

Here is an example.

Sample Problem: Present an efficient algorithm which given two sets of pointsR = {r1, . . . , rn}
and B = {b1, . . . , bn}, both in R

3, determines whether their exists a plane h in R
3 such

that all the points of R lie on or above h and all the points of B lie on or below h.

Sample solution: We reduce the problem to linear programming in R
3. Let’s assume that

each ri ∈ R is given in coordinate form as (ri,x, ri,y, ri,z) and similarly for B. Let’s model
h by the equation z = ax + dy + e, for some real parameters a, d, and e. To enforce
the condition that each ri lies on or above h and each bj lies on or below it, we add the
constraints

ri,z ≥ ari,x + dri,y + e, for 1 ≤ i ≤ n

bj,z ≤ abj,x + dbj,y + e, for 1 ≤ j ≤ n.

We then invoke LP with 2n constraints in R
3 (with the variables (a, d, e)). Since this

is a yes-no answer, we don’t really care about the objective function. We can set it
arbitrarily, for example, “maximize e” (which is equivalent to using the objective vector
c = (0, 0, 1)).

If we wish to be even more formal (which is not usually required), we can express the
LP in standard form as maximizing cT form as Ax ≤ b, where x is the symbolic vector
(a, d, e) ∈ R

3, and A and b can be expressed as

r1,x r1,y 1
...

...
...

rm,x rm,y 1
−b1,x −b1,y −1

...
...

...
−bn,x −b1,y −1

a
d
e

 ≤

r1,z
...

rm,z

−b1,z
...

−bn,z

5

We interpret the LP’s result as follows. If the result is “infeasible”, then we know that no
such plane exists. If the answer is “feasible” or “unbounded”, then we assert that such
a plane exists (assuming general position). This is clearly true if the result is “feasible”,
since we can just take h to be the plane associated with the optimum vertex (a, d, e).
If the result is “unbounded”, then the plane is vertical, but there exists a perturbation
such that R lies above and B lies below.

6

CMSC 754: Fall 2023 Dave Mount

Sample Problems for the Midterm Exam

The midterm exam will be this Thursday, Oct 19 in class. It will be closed-book and closed-

notes, but you may use one sheet of notes (front and back).
Unless otherwise stated, you may assume general position. If you are asked to present an

O(f(n)) time algorithm, you may present a randomized algorithm whose expected running time is
O(f(n)). For each algorithm you give, derive its running time and justify its correctness.

Disclaimer: The following sample problems have been collected from old homeworks and
exams. Because the material and order of coverage varies each semester, these problems do not

necessarily reflect the actual length, coverage, or difficulty of the midterm exam.

Problem 0. Expect a problem asking you to work through all or part of an algorithm that was
presented in class on a specific example.

Problem 1. Give a short answer to each question (a few sentences suffice).

(a) Explain how to use at most three orientation tests to determine whether a point d lies
within the interior of a triangle △abc in the plane. You do not know whether △abc is
oriented clockwise or counterclockwise (but you may assume that the three points are
not collinear).

(b) Let P be a simple polygon with n sides, where n is a large number. As a function of
n, what is the maximum number of scan reflex vertices that it might have? Draw an
example to illustrate.

(c) A convex polygon P1 is enclosed within another convex polygon P2 (see Fig. 1(a)).
Suppose you dualize the vertices of each of these polygons (using the dual transform
given in class, where the point (a, b) is mapped to the dual line y = ax− b). What can
be said (if anything) about the relationships between the resulting two sets of dual lines.

P2

P1

(a) (b)

Figure 1: (a) Duals of nested polygons and (b) triangulating a polygon with holes.

(d) Any triangulation of any n-sided simple polygon has exactly n − 2 triangles. Suppose
that the polygon has h polygonal holes each having k sides. (In Fig. 1(b), n = 10, h = 2,
and k = 4). As a function of n, h and k, how many triangles will such a triangulation
have? Explain briefly.

1

(e) You are given a set of n disjoint line segments in the plane that have m intersection
points. (For example, in Fig. 2, n = 4 and m = 3). Suppose that you build a trapezoidal
map of the segments, but whenever two segments intersect, there are two bullet paths
shot (up and down) from such a point. As a function of n and m, what is the maximum
number of trapezoids in the final trapezoidal map? Explain briefly. (Give an exact, not
asymptotic, answer.)

Figure 2: Trapezoidal map with intersections.

(f) Consider the linear-programming algorithm given in class for n constraints in dimension
2. In class we showed that the expected-case running time of the algorithm is O(n).
What is the worst-case running time of the algorithm? Briefly justify your answer (in a
sentence or two).

(g) It is a fact that if P is a uniformly distributed random set of n points in a circular disk
in the plane, the expected number of vertices of P ’s convex hull is Θ(n1/3). That is, the
lower and upper bounds are both within some constant of n1/3 for large n. What is the
average-case running time of Jarvis’s algorithm for such an input?

(h) Given a set P of n points in the plane, what is the maximum number of edges in P ’s
Voronoi diagram? (For full credit, express your answer up to an additive constant.)

(i) In Fortune’s algorithm, suppose that three points pi, pj , and pk are involved in a vertex
event (also known as a circle event). Let c = (cx, cy) denote the center of their cir-
cumcircle, and let r denote its radius. What is the y-value where the vertex event is
processed?

(j) For each of the following assertions about the Delaunay triangulation (DT) of a set P
of n points in the plane, which are True and which are False?

(i) The Euclidean minimum spanning tree of P is a subgraph of the DT.

(ii) Among all triangulations of P , the DT maximizes the minimum angle.

(iii) Among all triangulations of P , the DT minimizes the maximum angle.

(iv) Among all triangulations of P , the DT minimizes the total sum of edge lengths.

(v) The DT is a t-spanner, for some constant t.

Problem 2. For this problem give an exact bound for full credit and an asymptotic (big-Oh)
bound for partial credit. Assume general position.

(a) You are given a convex polygon P in the plane having nP sides and an x-monotone
polygonal chain Q having nQ sides (see Fig. 3(a)). What is the maximum number of
intersections that might occur between the edges of these two polygons?

2

(a) P

Q

Q

P

(b)

Figure 3: Maximum number of intersections.

(b) Same as (a), but P and Q are both polygonal chains that are monotone with respect to
the x-axis (see Fig. 3(b)).

(c) Same as (b), but P and Q are both monotone polygonal chains, but they may be
monotone with respect to two different directions.

Problem 3. A simple polygon P is star-shaped if there is a point q in the interior of P such
that for each point p on the boundary of P , the open line segment qp lies entirely within
the interior of P (see Fig. 4). Suppose that P is given as a counterclockwise sequence of its
vertices ⟨v1, v2, . . . , vn⟩. Show that it is possible to determine whether P is star-shaped in
O(n) time. (Note: You are not given the point q.) Prove the correctness of your algorithm.

P P

q

Figure 4: Determining whether a polygon is star-shaped.

Problem 4. This problem is inspired from applications in surveillance. Given a simple polygon
P , we say that two points p and q are visible to each other if the open line segment between
them lies entirely within P ’s interior. We allow for p and q to lie on P ’s boundary, but the
segment between them cannot pass through any vertex of P (see Fig. 5(a)).

visible

visible

not

not

(a)

P P

(b)

Figure 5: (a) Visibility and (b) a guarding set of size 9 for P .

3

A guarding set for P is any set of points G, called guards, lying in P (either on its boundary
or in its interior) such that every point in P ’s interior is visible to at least one guard of G.
Note that guards may be placed on vertices, along edges, or in P ’s interior (see Fig. 5(b)).

Prove that there exists a constant c ≥ 1 such that (for all sufficiently large n) every n vertex
simple polygon P has a guarding set of size at most n/c. For full credit, show that c = 3
works.

Problem 5. A slab is the region lying between two parallel lines. You are given a set of n slabs,
where each is of vertical width 1 (see Fig. 6). Define the depth of a point to be the number
of slabs that contain it. The objective is to determine the maximum depth of the slabs using
plane sweep. (For example, in Fig. 6 the maximum depth is 3, as realized by the small
triangular face in the middle.)

1

1

1

1

1

1

1 1

1

2

2

2

2

2

1

3

0

0

0

0
0

0

0

0

p1

p2

p4

p3

q1

q4

q2

q3

1

x0 x1

Figure 6: Maximum depth in a set of slabs.

We assume that the slabs lie between two parallel lines at x = x0 and x = x1. The ith slab is
identified by the segment piqi that forms its upper side (and the lower side is one unit below
this). Let I denote the number of intersections between the line segments (both upper and
lower) that bound the slabs. Present an O((n + m) log n)-time algorithm to determine the
maximum depth. (Hint: Use plane-sweep.)

Problem 6. You are given a set of n vertical line segments in the plane S = {s1, . . . , sn}, where
each segment si is described by three values, its x-coordinate xi, its upper y-coordinate y+i
and its lower y-coordinate y−i . A transversal is defined to be a line ℓ : y = ax + b that
intersects all of these segments (see Fig. 7).

xi

y−i

y+i

ℓ : y = ax + b

Figure 7: Existence of a transversal.

4

Present an efficient an algorithm, which given S determines whether there exists a transversal.
(Hint: O(n) time is possible.) Justify your algorithm’s correctness and derive its running time.

Problem 7. You are given two sets of points in the plane, the red set R containing nr points and
the blue set B containing nb points. The total number of points in both sets is n = nr + nb.
Give an O(n) time algorithm to determine whether the convex hull of the red set intersects
the convex hull of the blue set. If one hull is nested within the other, then we consider them
to intersect. (Hint: It may be easier to consider the question in its inverse form, do the convex
hulls not intersect.)

Problem 8. Given a set of n points P in the plane, we define a subdivision of the plane into
rectangular regions by the following rule. We assume that all the points are contained within
a bounding rectangle. Imagine that the points are sorted in increasing order of y-coordinate.
For each point in this order, shoot a bullet to the left, to the right and up until it hits
an existing segment, and then add these three bullet-path segments to the subdivision (see
Fig. 8(a)).

new point

segments trimmedsegments trimmed

(a) (b)

Figure 8: Building a subdivision.

(a) Show that the resulting subdivision has size O(n) (including vertices, edges, and faces).

(b) Describe an algorithm to add a new point to the subdivision and restore the proper
subdivision structure. Note that the new point may have an arbitrary y-coordinate, but
the subdivision must be updated as if the points had been inserted in increasing order
of y-coordinate (see Fig. 8(b)).

(c) Prove that if the points are added in random order, then the expected number of struc-
tural changes to the subdivision with each insertion is O(1).

Problem 9. Given two points p1 = (x1, y1) and p2 = (x2, y2) in the plane, we say that p2 dominates

p1 if x1 ≤ x2 and y1 ≤ y2. Given a set of points P = {p1, p2, . . . , pn}, a point pi is said to
be Pareto maximal if it is not dominated by any other point of P (shown as black points in
Fig. 9(b)).

Suppose further that the points of P have been generated by a random process, where the x-
coordinate and y-coordinate of each point are independently generated random real numbers
in the interval [0, 1].

5

(a) (b)

Figure 9: Paresto maxima.

(a) Assume that the points of P are sorted in increasing order of their x-coordinates. As
a function of n and i, what is the probability that pi is maximal? (Hint: Consider the
points pj , where j ≥ i.)

(b) Prove that the expected number of maximal points in P is O(log n).

Problem 10. Consider an n-sided simple polygon P in the plane. Let us suppose that the leftmost
edge of P is vertical (see Fig. 10(a)). Let e denote this edge. Explain how to construct a
data structure to answer the following queries in O(log n) time with O(n) space. Given a ray
r whose origin lies on e and which is directed into the interior of P , find the first edge of P
that this ray hits. For example, in the figure below the query for ray r should report edge f .
(Hint: Reduce this to a point location query in an appropriate planar subdivision.)

f

re

P

Figure 10: Ray-shooting queries.

Problem 11. You are given a set P of n points in R
2. Present data structures for answering

the following two queries. In each case, the data structure should use O(n2) space, it should
answer queries in O(log n) time. (You do not need to explain how to build the data structure.)

(a) The input to the query is a nonvertical line ℓ. Such a line partitions P into two (possibly
empty) subsets: P+(ℓ) consists of the points lie on or above ℓ and P−(ℓ) consists of
the points of P that lie strictly below ℓ (see Fig. 11(a)). The answer is the maximum
vertical distance h between two lines parallel to h that lie between P+(ℓ) and P−(ℓ) (see
Fig. 11(b)).

For simplicity, you may assume that neither set is empty (implying that h is finite).

(b) Again, the input to the query is a nonvertical line ℓ. The answer to the query consists
of the two lines ℓ− and ℓ+ of minimum and maximum slope, respectively, that separate

6

(a) (b)

ℓ

P
+(ℓ)

P
−(ℓ)

ℓ

h

ℓ

(c)

ℓ
+

ℓ
−

Figure 11: Separation queries.

P+(ℓ) from P−(ℓ) (see Fig. 11(c)). You may assume that P+(ℓ) from P−(ℓ) are not

separable by a vertical line (implying that these two slopes are finite).

Problem 12. You are given a set P of n points in the plane and a path π that visits each point
exactly once. (This path may self-intersect. See Fig. 12.)

π

ℓ1 ℓ2

Figure 12: Path crossing queries.

Explain how to build a data structure from P and π of space O(n) so that given any query line
ℓ, it is possible to determine in O(log n) time whether ℓ intersects the path. (For example, in
Fig. 12 the answer for ℓ1 is “yes,” and the answer for ℓ2 is “no.”) (Hint: Duality is involved,
but the solution requires a bit of “lateral thinking.”)

Problem 13. Consider the following two geometric graphs defined on a set P of points in the
plane.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at
the midpoint of pq having two sides parallel to the segment pq (see Fig. 13(a)). The
edge (p, q) is in the box graph if and only if box(p, q) contains no other point of P (see
Fig. 13(b)). Show that the box graph is a subgraph of the Delaunay triangulation of P .

(a) (b)

q

p

box(p, q)

(c) (d)

q

p

diamond(p, q)

Figure 13: The box and diamond graphs.

7

(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square
having pq as a diagonal (see Fig. 13(c)). The edge (p, q) is in the diamond graph if
and only if diamond(p, q) contains no other point of P (see Fig. 13(d)). Show that the
diamond graph may not be a subgraph of the Delaunay triangulation of P . (Hint: Give
an example that shows that the diamond graph is not even planar.)

Problem 14. You are given a set of n sites P in the plane. Each site of P is the center of a circular
disk of radius 1. The points within each disk are said to be safe. We say that P is safely

connected if, given any p, q ∈ P , it is possible to travel from p to q by a path that travels
only in the safe region. (For example, the disks of Fig. 14(a) are connected, but the disks of
Fig. 14(b) are not.)

Present an O(n log n) time algorithm to determine whether such a set of sites P is safely
connected. Justify the correctness of your algorithm and derive its running time.

(a) (b)

qp qp

Figure 14: Safe connectivity.

Problem 15. In class we argued that the number of parabolic arcs along the beach line in Fortune’s
algorithm is at most 2n − 1. The goal of this problem is to prove this result in a somewhat
more general setting.

Consider the beach line at some stage of the computation, and let {p1, . . . , pn} denote the
sites that have been processed up to this point in time. Label each arc of the beach line with
its the associated site. Reading the labels from left to right defines a string. (In Fig. 15 below
the string would be “p2p1p2p5p7p9p10”.)

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10
p2

p1

p2

p5
p7

p9
p10

Figure 15: Beach-line complexity.

(a) Prove that for any i, j, the following alternating subsequence cannot appear anywhere

8

within such a string:
. . . pi . . . pj . . . pi . . . pj . . .

(b) Prove that any string of n distinct symbols that does not contain any repeated symbols
(. . . pipi . . .) and does not contain the alternating sequence1 of the type given in part (a)
cannot be of length greater than 2n− 1. (Hint: Use induction on n.)

1Sequences that contain no forbidden subsequence of alternating symbols are famous in combinatorics. They are

known as Davenport-Schinzel sequences. They have numerous applications in computational geometry, this being

one.

9

CMSC 754: Fall 2023 Dave Mount

CMSC 754: Midterm Exam

In all problems, unless otherwise stated, you may assume that inputs are in general position.
You may make use of any results presented in class and any well known facts from algorithms
or data structures. If you are asked for an O(T (n)) time algorithm, you may give a randomized

algorithm with expected time O(T (n)). If you are asked to give an algorithm, also explain how it
works and derive its running time. (Unless otherwise stated, formal proofs of correctness are not
required.)

Problem 1. (20 points) Short-answer questions.

(a) (4 points) Given a planar point set with n points and h vertices on the convex hull.
What must be true about the relationship between h and n for Jarvis’s algorithm to run
at least as fast as Graham’s algorithm? (State your answer asymptotically.)

(b) (4 points) Given a simple polygon with n ≥ 3 vertices, what is the maximum number of
reflex vertices it might have. (Remember that a reflex vertex is one whose interior angle
is greater than 180◦.) For full credit, give an exact answer as a function of n.

(c) (4 points) Consider Fortune’s algorithm to compute the Voronoi diagram of n sites in
the plane. What is the maximum number of arcs that any one site can contribute to the
beach line?

(d) (8 points) Which of the following assertions about the Delaunay triangulation (DT) of
a set P of n points in the plane are true?

(1) The closest pair of points are connected by an edge in the DT.

(2) The farthest pair of points cannot be connected by an edge in the DT.

(3) Among all triangulations of P , the DT maximizes the minimum angle.

(4) Among all triangulations of P , the DT minimizes the maximum angle.

(5) Among all triangulations of P , the DT minimizes the total sum of edge lengths.

Problem 2. (15 points) Recall the plane-sweep algorithm for decomposing a simple polygon into
monotonic pieces.

(a) (8 points) Give the values of helper(ei), for i = 1, . . . , 4 in Fig 1(a).

(b) (7 points) Show all the new diagonals that would be added as a result of the event at
vertex vi, for i = 1, . . . , 4 in Fig 1(b).

Problem 3. (15 points) We are given a collection of n (non-vertical) line segments S = {s1, . . . , sn}
in the plane in no particular order. Each segment is given by its endpoints si = piqi, where
pi has the smaller x-coordinate. We want to know whether altogether, these segments form
the edges of a single simple polygon (see Fig. 2(a)). That is, we need to check the following
things:

❼ No two segments intersect, except at their endpoints (see Fig. 2(b)).

1

(a)

e1

e3

a

b

c

m

n

o

p

(b)

a

b

c

ℓ ℓ

m

n

o

p

v1

v3 e4q

r

s

q

r

s
v4

(a) (b)

ℓ ℓ

e2
f

g
h
i

j
k

f
g

h
i

j
k

v2

Figure 1: Plane-sweep monotone decomposition.

❼ Each vertex should have degree two, meaning that there are exactly two segments sharing
each endpoint (see Fig. 2(b)).

❼ The segments form a single closed loop (see Fig. 2(c)).

(a) (b) (c)

intersecting segments incorrect degree multiple loops

pi

qisi

Figure 2: Does a set of segments define a simple polygon?

Present an efficient algorithm to check that the segments form a simple polygon. If the
segments violate any of the above conditions, print the first such violation and terminate.
Your algorithm should run in O(n log n) time. (Partial credit will be given if you correctly
detect any of the three violations.)

Problem 4. (25 points) Explain how to solve each of the following problems in linear (expected)
time. Each can be modeled by reduction to linear programming (LP), perhaps involving
multiple instances along with some additional pre- and/or post-processing.

(a) (15 points) In your new career as an archer (shooting arrows), you want to shoot a single
arrow through a series of targets. You may stand anywhere you want on the positive
y-axis and may shoot in any direction you like. The targets are vertical line segments all
in the positive x, y-plane (see Fig. 3(a)). There are n targets. The ith target is specified
by giving its center point ci = (ci,x, ci,y) and its height hi.

2

ci hi

d

u

(b)(a)

Figure 3: Hitting all targets with a single shot.

Present an algorithm that determines whether there exists a single (straight-line) shot
that passes through all n targets. If any such a shot exists, output the height d where
the shot originates on the y-axis and a directional vector u = (ux, uy) that indicates the
direction of the shot (see Fig. 3(b)). If there is no shot, indicate this. Your algorithm
should run in O(n) time.

(b) (10 points) Consider the same problem as (a) but with the following modification. As in
(a), your shot must hit all the targets, but in addition it should come as close as possible
(on average) to hitting the centers of the targets. More formally, given any shot, let
pi denote the point where the shot crosses the ith target (see Fig. 4). The objective
is to minimize the absolute value of 1

n

∑n
i=1

(pi,y − ci,y). Explain your algorithm and
derive/explain its running time.

Hint: This is a bit tricky, and if you don’t see the answer right away, you may want to
come back to this later.

d

u ci

pi pi,y − ci,yci hi

Figure 4: Hitting all targets close to the centers.

Problem 5. (25 points) Our objective is to develop a data structure to determine the first target
(if any) that is missed by a shot in the archery problem (Problem 4). The data structure is
constructed based on the target centers ci and their heights hi (see Fig. 5(a)). A query is
given the y-coordinate d along the y-axis where the shot starts and a directional vector u (see
Fig. 5(b)).

(a) (15 points) Present a data structure which, given d and u = (ux, uy) determines the first
target, if any, that is missed by the shot. You may assume that d ≥ 0 and ux > 0. Your
data structure should use O(n) space and answer queries in time O(log n).

(b) (5 points) Suppose that your shot hits all the targets. Assuming that you maintain the
same directional vector for the shot, what is the minimum and maximum range of d
values such that the shot hits all the targets? Explain how to modify your solution to
(a) to answer this in the same space and query time bounds (see Fig. 6(b)).

3

d

u

hici

first missed

(b)(a)

Figure 5: Arrow-shooting queries.

dd

u

d

(a) (b) (c)

Figure 6: Arrow-shooting variants.

(c) (5 points) Suppose that your shot hits all the targets. Assuming that you maintain the
same d value on the y-axis for the shot, what is the minimum and maximum range slopes
such that the shot hits all the targets? Explain how to modify your solution to (a) to
answer this in the same space and query time bounds (see Fig. 6(c)).

Hint: This is a bit tricky, and if you don’t see the answer right away, you may want to
come back to this later.

4

CMSC 754: Fall 2023 Dave Mount

Homework 3: Voronoi/Delaunay, Arrangements, and Search

Handed out Thu, Nov 2. Due at the start of class on Tue, Nov 28. Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed
by the due date.

Unless otherwise specified, you may assume that all inputs are in general position. Whenever
asked to give an algorithm running in O(f(n)) time, you may give a randomized algorithm whose
expected running time is O(f(n)). If your algorithm involves a plane sweep of a line arrangement
and runs in time O(n2 log n), you may assume that there exists a topological plane sweep variant
that runs in time O(n2).

Problem 1. (10 points) This problem demonstrates an important application of computational
geometry to the field of amphibian navigation. A frog who is a afraid of the water wants to
cross a stream that is defined by two horizontal lines y = y− and y = y+. On the surface
there are n circular lily pads whose centers are at the points P = {p1, . . . , pn}. The frog
crosses by hopping across the circular lily pads. The lily pads grow at the same rate, so that
at time t they all have radius t (see Fig. 1(a)). Help the frog out by presenting an algorithm
that in O(n log n) time determines the earliest time t∗ such that there exists a path from one
side of the stream to the other by traveling along the lily pads (see Fig. 1(b)).

(a) (b)

y−

y+

y−

y+

t∗t

Figure 1: Frog crossing.

Problem 2. (15 points) Define a slab to be the region bounded by two parallel (nonvertical) lines,
and define its height to be the vertical distance between these lines. You are given three sets
of points R, W , and B (red, white, and blue) in R

2. A 3-color slab is a pair of parallel lines
such that the closed region bounded between these two lines contains exactly one point from
each of R, W , and B in its interior (see Fig. 2). (We do not care what are the colors of the
points that lie on the two lines that bound the slab.)

Update (11/8): It was pointed out that with the above definition, an optimal solution may
fail to exist. (This is illustrated in Fig. 2(c), where the blue slab is a valid 3-color slab, but it
can be made progressively higher by rotating the two bounding lines. When the slab reaches
maximum height, shown in yellow, the blue point now lies on the slab’s upper boundary, and
hence it is not a valid 3-color slab!) To circumvent this issue, we allow solutions like the one
shown above, where the slab itself may not be valid, but an infinitesimal perturbation would
result in a valid 3-color slab.

1

∈ R

∈ W

∈ B

h

(a) (b) (c)

Figure 2: A 3-color slab of height h.

(a) (5 points) Assuming the standard dual transformation (mapping point (a, b) to line
y = ax− b), explain what a 3-color slab of height h corresponds to in the dual setting.

(b) (5 points) There are generally (uncountably) many 3-color slabs. What local conditions
must a 3-color slab satisfy in order to have maximum height? (You may assume that
the points are in general position. You may also assume that the given point set has no
3-color slab of infinite height.)

(c) (5 points) Present an algorithm, which given inputs R, W , and B, determines whether
there exists a 3-color slab. If not, indicate this. If so, compute the 3-color slab of
maximum height. Derive your algorithm’s running time and justify its correctness.
(Hint: For full credit, aim for a running time of O(n2 log n) time with O(n) space,
where n = |R|+ |W |+ |B|. You may make the same assumption as in part (b).)

Problem 3. (10 points) While kd-trees and range trees are good for axis-aligned queries, they do
not perform very well when the query shape is more general. In a halfplane range counting

query, we are given a point set P = {p1, . . . , pn} ∈ R
2 to be preprocessed into a data structure.

Given any halfplane, expressed say by a linear inequality, H = {(x, y) : ax + by ≤ c}, the
objective is to count how many points of P lie within H, that is, |P ∩H| (see Fig. 3(a)).

(a) (b)

H

Ans = 6 ℓ1

ℓ2

P
split4

Figure 3: Halfplane range counting.

(a) (5 points) Show that kd-trees do not provide an efficient worst-case solution for halfplane
range queries. Give an example of a point set P and a halfplane H such that any
(reasonable) query algorithm will require O(n) time to answer this query. (Hint: Design

2

the point set along with a hyperplane so that the line bounding H intersects a constant
fraction of the leaves of the kd-tree. We will accept a drawing as a solution, but make
it large enough that it is clear how to generalize it to arbitrarily large values of n.)

(b) (5 points) Let’s explore a simple (but not optimal) approach for answering halfplane
range counting queries. Let us suppose that we have as a “black-box” subroutine, called
split4, which given any n-element point set P in R

2, generates two lines ℓ1 and ℓ2, that
partitions P into four subsets (depending on which sides of these lines the points lie)
such that each set has at most ⌈n/4⌉ points (see Fig. 3(b)). (Such a subroutine exists.
See the challenge problem.)

Given a point set P , explain how to use the split4 function to generate a partition tree
for P . Show that tree has space O(n) and height O(log n). Prove that the tree supports
halfplane range counting queries in time O(nlog

4
3) ≈ O(n0.792). (Hint: Each node of

the tree will have four children. The Master Theorem may be helpful in analyzing the
query time.)

Problem 4. (15 points) In this problem, we will consider how to use/modify range trees to answer
a number of queries. In each case, the input is an n-element point set P in R

2, and for each
explain what points are stored in the range tree, what the various layers of the range tree
are, and how queries are answered. Finally, justify your algorithm’s correctness and derive its
storage and running time as a function of n. You may make the general-position assumption
that no point of P lies on the boundary of any range.

(a) (5 points) A sheared rectangle is defined by two points q− = (x−, y−) and q+ = (x+, y+).
The range shape is a parallelogram that has two horizontal sides and two sides with a
slope of −1 (see Fig. 3(a)). The upper left corner is q− and the lower right corner is q+.
The answer to a sheared rectangle query is the number of points of P that lie within the
parallelogram.

a

y0

x

y

(a) (b) (c)

x0

y1

x

y

(x0, y0)

δy

δx

δx

δy

(x0, y0)

Ans = 4

x

y q+

q− Ans = 5

Ans = a

Ans = 3

y0

x0

y1
Ans = null

Figure 4: Using range trees to answer various queries.

(b) (5 points) In a vertical segment-sliding query (VSS), you are given a vertical line segment
with x-coordinate x0 and endpoints at y-coordinates y0 and y1, where y0 < y1. The
answer to the query is the first point that is hit if the segment is translated to the right
(see Fig. 4(b)). If the segment can be slid infinitely far to the right without hitting a
point of P , the query returns the special value null.

3

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

(c) (5 points) A 30-60 right triangle is a right triangle where vertices have angles 30, 60,
and 90 degrees. A 30-60 right triangle range is such a triangle, where two of the sides are
parallel to the coordinate axes. In a 30-60 triangle query, you are given such a triangle,
and the answer is the number of points of P lying within the triangle (see Fig. 4(c)).
The triangle is specified by giving the coordinates (x0, y0) of the vertex forming the right
angle, and two additional nonzero scalars δx and δy (which may be positive or negative).
The other two vertices are located at (x0 + δx, y0) and (x0, y0 + δy). Note that there are
eight distinct triangle shapes, depending on the signs of δx and δy and which is larger.

Since we are only interested in 30-60 triangles, you may assume that |δx/δy| =
√
3 or

1/
√
3.

Hint: In all cases, it is possible to answer queries in O(logc n) time, for some constant c. It
is sufficient to adapt the standard range-tree approach, and in particular, you do not need to
use cascading search.

Challenge problems count for extra credit points. These additional points are factored in only after
the final cutoffs have been set, and can only increase your final grade.

Challenge Problem 1. Present a polynomial time algorithm for the function split4. That is,
given a set P of n points in the plane, your algorithm will output two lines ℓ1 and ℓ2 that
partition P into four subsets, each of size at most ⌈n/4⌉.
Hint: First, translate the points so the y-axis partitions P into two subsets of equal size.
The y-axis is the line ℓ1. All you need is to show how to compute ℓ2. For that, it may be
helpful to consider the problem in the dual setting.

Challenge Problem 2. The data structure described in 3(b) can be improved upon. Show how
to modify the data structure of 3(b) by replacing the 4-ary tree with a binary tree. Show
that, up to constant factors, the query time T (n) satisfies the following recurrence:

T (n) = T (n/2) + S(n/2) + 1 and S(n) = T (n/2) + 1.

Here T (n) denotes the query time for a subtree containing n points, and S(n) denotes the
query time for a subtree with the added condition that for one of its two children, all the points
lie within H or none of them do. Derive a solution to this recurrence. (Hint: Somewhat
surprisingly, the answer is related to the Fibonacci sequence.)

4

CMSC 754: Fall 2023 Dave Mount

Homework 4: WSPDs, Sampling, and Motion Planning

Handed out Tue, Nov 28. Due, Thu, Dec 7, 9:30am. Late homeworks are not accepted (unless
an extension has been prearranged) so please turn in whatever you have completed by the due
date. Unless otherwise specified, you may assume that all inputs are in general position. Whenever
asked to give an algorithm running in O(f(n)) time, you may give a randomized algorithm whose
expected running time is O(f(n)).

Problem 1. (15 points) This problem involves a couple problems related to computing the statis-
tics on a sets of n points P in R

d. Each can be solved with the use of WSPDs. In each case,
assume that you have access to a subroutine that can compute an s-WSPD of size O(sdn)
for any set of n points in R

d in time O((n log n) + sdn). As we did in class, assume that
the WSPD is represented as a set of pairs of nodes from a quadtree for P . Each node of
the quadtree can store auxiliary information about the points lying within it subtree (e.g.,
a representative point, the number of points, or any additional statistics involving just these
points).

In your answer, you should explain (i) what separation value do you use, (ii) what auxiliary
information is stored in each node of the quadtree to help you, (iii) prove your algorithm’s
correctness, and (iv) indicate its running time.

(a) (5 points) Given a point set P = {p1, . . . , pn} ⊂ R
d and 0 < ε < 1 the average interpoint

distance is defined to be

∆(P) =
1(
n
2

)
∑

1≤i<j≤n

∥pi − pj∥.

Computing this naively would take O(n2) time. Present an efficient WSPD-based al-
gorithm that computes an ε-approximation to ∆(P). It computes a value ∆̃(P) such
that

1

1 + ε
∆(P) ≤ ∆̃(P) ≤ (1 + ε)∆(P).

(b) (10 points) Solve (a), but this time with the generalization that we want to compute the
average of the kth powers of the distances. Given an integer k ≥ 1, define

∆[k](P) =
1(
n
2

)
∑

1≤i<j≤n

∥pi − pj∥
k.

(This is also known as the kth moment of the interpoint distance.) Assuming that k

is a constant (independent of d or n) present an efficient WSPD-based algorithm that
computes an ε-approximation to ∆(P). It computes a value ∆̃[k](P) such that

1

1 + ε
∆[k](P) ≤ ∆̃[k](P) ≤ (1 + ε)∆[k](P).

(Hint: The structure is essentially the same as part (a). It will be helpful to have an
approximation for (1 + ε)k, assuming 0 < ε < 1. For this, it is useful to recall the
Binomial Theorem, (a+ b)k =

∑k
i=0

(
k
i

)
aibk−i.

1

Problem 2. (10 points) While coresets provide close approximations to some statistic of interest,
it is often useful to have an easily computable lower bound or upper bound, that is just within
a constant fraction of the exact value. In this problem, we’ll consider a crude lower bound
for the weight of the Euclidean minimum spanning tree in R

d. Recall that in dimensions 3
and higher, computing the Euclidean minimum spanning tree exactly takes nearly quadratic
time.

You are given a set of n points P = {p1, . . . , pn} ⊂ R
d. Let emst(P) denote the weight of

P ’s Euclidean minimum spanning tree. We will compute our lower bound as follows. Place
the points of P in a unit square grid, that is, a grid of hypercubes, each of side length 1 (see
Fig. 1(a)). Let N(P) denote the number of grid squares that contain at least one point of P .

N(P) = 14 m = 6
1

(a) (b) (c)

1

Figure 1: Lower bound for Euclidean minimum spanning tree.

Prove that there exist positive constants ad and cd (depending on the dimension d, but not
on n), such that if N(P) ≥ ad then

emst(P) ≥
N(P)

cd
.

It is not necessary to derive the best values of ad and cd, but as a hint, both quantities vary
exponentially with d.

Hint: This can be done in two parts. For the first part, let G(P) denote the grid squares that
contain at least one point of P , meaning that N(P) = |G(P)|. (These are the yellow squares
in Fig. 1(a)). Show that if N(P) is sufficiently large (depending on d) there is a subset of
G(P) containing at least a constant fraction of squares, so that no two of these squares have
boundaries that touch each other. (These are the gray squares in Fig. 1(b)). For the second
part, show that if you are given any set of m unit grid squares, where no two have boundaries
that touch, then any spanning tree connecting these squares has weight at least m − 1 (see
Fig. 1(c)). Finally, explain how these two facts can be combined to prove the lower bound on
emst(P).

Problem 3. (15 points) The objective of this problem is to investigate the VC-dimension of some
range spaces. Recall that a range space Σ is a pair (X,R), where X is a (finite or infinite)
set, called points, and R is a (finite or infinite) family of subsets of X, called ranges.

For each of the following range spaces, derive its VC-dimension and prove your result. (Note
that in order to show that the VC-dimension is k, you need to give an example of a k-element
subset that is shattered and prove that no set of size k + 1 can be shattered.) Throughout,
you may assume that points are in general position.

2

(a) (5 points) Σ = (R2,U), where U consists of all orthogonal U-shaped ranges. An orthog-

onal U-shaped range is defined by three numbers (x0, x1, y0). It is the region bounded
between the two vertical lines x0 ≤ x ≤ x1 and above a horizontal line y ≥ y0 (see
Fig. 2(a)).

(b) (10 points) Σ = (R2,V), where V consists of all orthogonal V-shaped ranges. An orthog-

onal V-shaped range is defined by four numbers (x0, x1, a, b). It is the region bounded
between the two vertical lines x0 ≤ x ≤ x1 and above a line y ≥ ax+ b (see Fig. 2(b)).

(a) (b)

x0 x1

y0

x0 x1

y = ax + b

Figure 2: VC-Dimension of some range spaces.

Problem 4. (10 points) Let us consider a motion planning problem in the plane involving a set
of rectangular obstacles and a translating “L”-shaped robot (see Fig. 3(a)). The robot R
is an “L”-shaped polygon as shown in Fig. 3(b). Its reference point is its lower-left corner.
The obstacles consist of a collection of non-intersecting rectangles {O1, . . . , On}, where Oi

has lower-left corner pi and horizontal length ℓi and vertical height hi (see Fig. 3(c)).

You are given a start point s and target point t. Assuming the robot’s reference point starts
at s, is there an obstacle-avoiding motion that terminates with the endpoint at t? In this
problem will explore a solution to this problem.

t
s

?

(a) (b)

w

ℓ

hh

Oi

pi

w

(c)

R

ℓi

hi

Figure 3: L-shaped robot motion planning.

(a) (5 points) Given an obstacleOi, provide a clear description and a picture of the associated
C-obstacle (its shape, side lengths, and location).

(b) (5 points) Given the starting and target points s and t, sketch an algorithm for determin-
ing whether there is a collision-free translational motion of the robot with its reference
point starting at s and ending at t.

3

A high-level sketch of the algorithm is sufficient. To make your life simpler, you may
assume that you are given a procedure that will input the C-obstacles from part (a),
compute their union, and returns a convenient decomposition of free-space (e.g., as a
trapezoidal map). Your algorithm should be efficient, in the sense that its running time
should be roughly proportional to the combinatorial complexity of the free space, that
is, the union of the C-obstacles. (See the Challenge Problem.)

Challenge Problem. Recalling the setup in Problem 4, what is the worst-case combinatorial
complexity of the free space, that is, the union of all the C-obstacles? You may select any
values you like for the robot’s dimensions (h, ℓ, and w), and you may place the n rectangles
anywhere you like. Justify your answer.

4

CMSC 754: Fall 2023 Dave Mount

Sample Problems for the Final Exam

The final exam will be Thu, Dec 14, 8:00am-10:00am in class. The exam will be closed-book
and closed-notes. You may use two sheets of notes (front and back). The following problems have
been collected from old homeworks and exams. They do not necessarily reflect the actual difficulty
or coverage of questions on the final exam. The final will be comprehensive, but will emphasize
material since the midterm.

In all problems, unless otherwise stated, you may assume general position, and you may use of
any results presented in class or any well-known result from algorithms and data structures.

Problem 1. Give a short answer (a few sentences) to each question. Unless explicitly requested,
explanations are not required, but may be given for partial credit.

(a) A dodecahedron is a convex polyhedron that has 12 faces, each of which is a 5-sided pen-
tagon. Every vertex has degree 3. How many vertices and edges does the dodecahedron
have? Show how you derived your answer.

(b) Given a set P of n points in the plane, what is the maximum number of edges in P ’s
Voronoi diagram? (For full credit, express your answer up to an additive constant.)

(c) When the ith site is added to the Delaunay triangulation using the randomized incre-
mental algorithm, what is the worst-case number of edges that can be incident on the
newly added site? What can you say about the expected-case number of such edges
(assuming that points are inserted in random order)?

(d) What was the importance of the Zone Theorem in our incremental algorithm for building
line arrangements in the plane?

(e) An arrangement of n lines in the plane has exactly n2 edges. How many edges are there
in an arrangement of n planes in 3-dimensional space? (Give an exact answer for full
credit or an asymptotically tight answer for half credit.) Explain briefly.

(f) Let P and Q be two simple polygons in R
2, where P has m vertices and Q has n vertices.

What is the maximum number of vertices on the boundary of the Minkowski sum P ⊕Q
(asymptotically) assuming:

(i) P and Q are both convex

(ii) P is convex but Q is arbitrary

(iii) P and Q are both arbitrary

(g) In each of the following cases, what is the asymptotic worst-case complexity (number of
vertices) on the boundary of the union of n of the following objects in R

2:

(i) axis-parallel squares

(ii) axis-parallel rectangles (of arbitrary heights and widths)

(iii) rectangles (of arbitrary heights and widths which need not be axis parallel)

(iv) axis-parallel rectangles, where the width to height ratio is either 4× 1 or 1× 4.

1

(a) (b)

ℓ

P
+(ℓ)

P
−(ℓ)

ℓ

h

ℓ

(c)

ℓ
+

ℓ
−

Figure 1: Query problem.

Problem 2. You are given a set P of n points in R
2. A nonvertical line ℓ partitions P into two

(possibly empty) subsets: P+(ℓ) consists of the points lie on or above ℓ and P−(ℓ) consists
of the points of P that lie strictly below ℓ (see Fig. 1(a)).

Given the point set P , present data structures for answering the following two queries. In each
case, the data structure should use O(n2) space, it should answer queries in O(log n) time.
(You do not need to explain how to build the data structure, but it should be constructable
in polynomial time in n.)

(a) The input to the query is a nonvertical line ℓ. The answer is the maximum vertical dis-
tance h between two lines parallel to h that lie between P+(ℓ) and P−(ℓ) (see Fig. 1(b)).
For simplicity, you may assume that neither set is empty (implying that h is finite).

(b) Again, the input to the query is a nonvertical line ℓ. The answer to the query are the
two lines ℓ− and ℓ+ of minimum and maximum slope, respectively, that separate P+(ℓ)
from P−(ℓ) (see Fig. 1(c)). You may assume that P+(ℓ) from P−(ℓ) are not separable
by a vertical line (implying that these two slopes are finite).

Problem 3. Consider an n-element point set P = {p1, . . . , pn} in R
2, and an arbitrary point

q ∈ R
2 (which is not in P). We say that q is k-deep within P if any line ℓ passing through q

has at least k points of P on or above the line and at least k points of P on or below it.

q

ℓ

Figure 2: Point q is 4-deep within P .

For example, the point q in Fig. 2 is 4-deep, because any line passing through q has at least
four points of P on either side of it (including lying on the line itself).

(a) Assuming we use the usual dual transformation, which maps point p = (a, b) to line
p∗ : y = ax− b, explain what it means for a point q to be k-deep within P (in terms of
the dual line q∗ and the dual arrangement A(P ∗)).

2

(b) Present an efficient algorithm which, given P and q, determines the maximum value k
such that q is k-deep within P . (Hint: O(n log n) time is possible. I will accept a slower
algorithm for partial credit.)

(c) Present an efficient algorithm which, given P and an integer k, determines whether there
exists a point q that is k-deep within P . (Hint: First consider what this means in the
dual setting. O(n2 log n) time is possible. I will accept a slower algorithm for partial
credit.)

For parts (b) and (c) briefly justify your algorithm’s correctness and derive its running time.

Problem 4. You are given a set P of n points in the plane and a path π that visits each point
exactly once. (This path may self-intersect. See Fig. 3.)

π

ℓ1 ℓ2

Figure 3: Path crossing queries.

Explain how to build a data structure from P and π of space O(n) so that given any query
line ℓ, it is possible to determine in O(log n) time whether ℓ intersects the path. (For example,
in Fig. 3 the answer for ℓ1 is “yes,” and the answer for ℓ2 is “no.”) (Hint: Duality is involved,
but the solution requires a bit of lateral thinking.)

Problem 5. Consider the following two geometric graphs defined on a set P of points in the plane.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at
the midpoint of pq having two sides parallel to the segment pq (see Fig. 4(a)). The
edge (p, q) is in the box graph if and only if box(p, q) contains no other point of P (see
Fig. 4(b)). Show that the box graph is a subgraph of the Delaunay triangulation of P .

(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square having
pq as a diagonal (see Fig. 4(c)). The edge (p, q) is in the diamond graph if and only if
diamond(p, q) contains no other point of P (see Fig. 4(d)). Show that the diamond graph
may not be a subgraph of the Delaunay triangulation of P . (Hint: Give an example that
shows that the diamond graph is not even planar.)

(a) (b)

q

p

box(p, q)

(c) (d)

q

p

diamond(p, q)

Figure 4: The box and diamond graphs.

3

Problem 6. Consider the range space Σ = (R2, T), where T is the set of all right triangles whose
two legs are parallel to the coordinate axes, so that the right angle is in the lower-left corner
of the triangle (see Fig. 5).

Figure 5: Set system of axis-aligned right triangles.

(a) Give an example of a 4-element point set P in R
2 that is shattered by Σ, and demonstrate

why it is shattered. (For preciseness, indicate the coordinates of the points, but you can
present a drawing to illustrate how to shatter them.)

(b) Prove that no 5-element point set in R
2 is shattered by Σ.

(c) What is the VC-dimension of Σ?

(d) Given a point set P in R
2 with n points, give a (tight) asymptotic upper bound on the

number of distinct subsets of P determined by Σ. (Using the notation given in class,
this is |T|P |.)

Problem 7. Given a set of n points P in R
d, and given any point p ∈ P , its nearest neighbor

is the closest point to p among the remaining points of P . Note that nearest neighbors are
not reflexive, in the sense that if p is the nearest neighbor of q, then q is not necessarily the
nearest neighbor of p. Given an approximation factor ε > 0, we say that a point p′ ∈ P is
an ε-approximate nearest neighbor to p if ∥pp′∥ ≤ (1 + ε)∥pp′′∥, where p′′ is the true nearest
neighbor to p.

Show that in O(n log n + (1/ε)dn) time it is possible to compute an ε-approximate nearest
neighbor for every point of P . Justify the correctness of your algorithm. Hint: This can be
solved using either WSPDs or spanners.

Note: There exists an algorithm that runs in O(n log n) time that solves this problem exactly,
but it is considerably more complicated than the one I have in mind here.

Problem 8. A set P of n points in R
d determines a set of

(

n
2

)

different distances. Define ∆(P) to
be this set of distances {∥pi − pj∥ : 1 ≤ i < j ≤ n}. Given an integer k, where 1 ≤ k ≤

(

n
2

)

,
we are interested in computing the kth smallest distance from this set. Normally, this would
take O(n2) time, so let’s consider a fast approximation algorithm.

Let δ(P, k) denote the exact kth smallest distance in ∆(P). Given ε > 0, a distance value x
is an ε-approximation to δ(P, k) if

δ(P, k)

1 + ε
≤ x ≤ (1 + ε)δ(P, k).

Present an efficient algorithm to compute such a value x. Justify your algorithm’s correctness
and derive its running time. (Hint: Use well-separated pair decompositions. You may assume

4

that, when the quadtree is computed, each node u of the quadtree is associated with an integer
wt(u), which indicates the number of points of P lying within u’s subtree.)

You may assume that d and ε are constants (independent of n). I know of an algorithm that
runs in time O(n log n + n/εd) time, but I will accept for full credit an algorithm that runs
in time O((n log n)/εd).

Problem 9. You are given a set P of n points in R
d and an approximation factor ε > 0. An

(exact) distance query is defined as follows. You are given a real δ > 0, and you are to return
a count of all the pairs of points (p, q) ∈ P × P , such that ∥pq∥ ≥ δ. In an ε-approximate

distance query, your count must include all pairs (p, q) where ∥pq∥ ≥ δ(1+ ε) and it must not

include any pairs (p, q) where ∥pq∥ < δ/(1 + ε). Pairs of points whose distances lie between
these two bounds may or may not be counted, at the discretion of the algorithm.

Explain how to preprocess P into a data structure so that ε-approximate distance counting
queries can be answered in O(n/εd) time and O(n/εd) space. (Hint: Use a well-separated pair
decomposition. Explain clearly what separation factor is used and any needed modification
to the WSPD construction.)

Problem 10. This problem considers motion planning in a dynamic setting, which is inspired by
various old video games. You are given a robot that consists of a line segment of unit length
that resides on the x-axis. The robot can move left or right (but not up or down) at a speed
of up to one unit per second. You are given two real values x− and x+, and the robot must
remain entirely between these two values at all times (see Fig. 6). The robot’s reference point

is its left endpoint, and at time t = 0, the left endpoint is located at x−. (You may assume
that x+ > x− + 1.)

x− x+1

pi = (xi, yi)

Figure 6: Robot motion planning.

You are also given a set of missiles in the form of n vertical line segments, each of length 0.2,
that fall down from the sky at a rate of two units per second. Each of these vertical segments
is specified by the coordinates of its lower endpoint at time t = 0. So, if pi = (xi, yi) is the
starting position of the ith missile, then at time t is its lower endpoint is located at (xi, yi−2t),
and its upper endpoint is at (xi, yi − 2t+ 0.2). You may assume that x− ≤ xi ≤ x+.

The question is whether it is possible for the robot to move in a manner to avoid all the
missiles. We will explore an algorithm for solving this problem.

(a) A natural way to define the robot’s configuration at any time is as a pair (t, x), where

5

t is the current time, and x is the location of the robot’s left endpoint. Based on this,
what is the C-obstacle associated with a missile whose starting position is pi (as defined
above)? In other words, describe the set of robot configurations (t, x) such that the robot
intersects this missile. (Please provide low-level details, as opposed, say, to expressing
this as a Minkowski sum.)

(b) Provide a complete characterization of the properties of a path in configuration space
(assuming it exists) that corresponds to a motion plan for the robot that satisfies the
robot’s speed constraints and avoids all the missiles. Be sure to include constraints on
the path’s starting and ending positions and include the robot’s maximum speed.

6

CMSC 754: Fall 2023 Dave Mount

CMSC 754: Final Exam

In all problems, unless otherwise stated, you may assume that inputs are in general position. If
you are asked for an O(T (n)) time algorithm, you may give a randomized algorithm with expected

time O(T (n)). If you are asked to give an algorithm, also explain how it works and derive its
running time. (Unless otherwise stated, formal proofs of correctness are not required.)

Problem 1. (30 points) Give a short answer (a few sentences at most) to each question. Except
where requested, explanations are not required.

(a) (5 points) Given a simple polygon with n sides, what can be said about the number
of triangles in any triangulation? Either state the exact number as a function of n, or
provide upper and lower bounds.

(b) (8 points) In class we showed that the trapezoidal map of n nonintersecting line segments
has at most 6n+ 4 vertices and at most 3n+ 1 trapezoids. Suppose instead that there
are k instances where two segments intersect. (In Fig. 1 there are n = 3 segments and
k = 2 intersection points.) At each intersection point, we shoot two bullet paths, up and
down. As a function of n and k, what is the (exact) number of vertices and trapezoids
in the resulting trapezoidal map? (No explanation needed.)

n = 3, k = 2 28 vertices, 16 trapezoids

Figure 1: A trapezoidal map with n = 3 segments and k = 2 intersection points.

(c) (4 points) In our backward analysis of randomized incremental algorithms, we were
careful to argue that the structure being analyzed does not depend on the order of
insertion. What aspect of the analysis would fail if the structure did depend on the
order of insertion? (Explain briefly.)

(d) (5 points) Consider the portion of the line arrangement shown in Fig. 2. Illustrate the
zone of the line ℓ in this arrangement.

(e) (8 points) Suppose you have a workspace with n disjoint obstacles, each of which is a
k-sided convex polygon, and you are given a robot that translates in this workspace,
which is modeled as an m-sided convex polygon.

(i) As a function of n, k, and m, give an upper bound on the total number of vertices in
all the C-obstacles? (You may express your answer using big-Oh notation.) Explain
briefly.

(ii) The C-obstacles may overlap. As a function of n, k, and m, give an upper bound
on the total number of vertices in the union of the C-obstacles? (Again, you can
use big-Oh notation.) Explain briefly.

1

ℓ

Figure 2: The zone of an arrangement.

Problem 2. (20 points) Present LP solutions to the following problems. In each case, explain how
the problem is formulated as an instance of LP (and what the dimension of the space is), and
how the result of the LP (feasible, infeasible, unbounded) is to be interpreted in answering
the problem.

ℓ : y = ax + b
ci

d−i

d+i

(a) (b)

h
h

2
pi

Figure 3: Stabbing segments and squares.

(a) (10 points) You are given a set of n vertical line segments in the plane S = {s1, . . . , sn},
where each segment si is described by three values, its x-coordinate ci, its upper y-
coordinate d+i and its lower y-coordinate d−i . Compute a line ℓ : y = ax + b that
intersects all of these segments. If it exists, return the line that maximizes the vertical
spacing h above and below the line (see Fig. 3(a)).

(b) (10 points) You are given a collection of n axis-aligned squares in the plane, each of side
length 2. The squares are centered at the points P = {p1, . . . , pn}, where pi = (ci, di)
(see Fig. 3(b)). Determine whether there exists a line ℓ : y = ax+ b that intersects all of
these squares. If it exists, return any such line. Hint: You may need to make multiple
(O(1)) calls to LP.

Problem 3. (30 points) For each of the following search problems, explain how to map this to a
data structure that we have seen this semester. In each case, explain which data structure
you will use (e.g., point-location, kd-tree, range tree, etc.), what information is stored in the
data structure, how much space it uses, and what the query time is. There may be multiple
options, and if so, select one that is most efficient.

2

The goal is to achieve space that is either linear in n or slightly higher (e.g., O(n), O(n log n),
or O(n log2 n)), and to achieve a query time that O(log n) or slightly higher (e.g., O(log2 n),
or O(log3 n)). We will give partial credit for a correct answer, even if the space or query time
is not optimal.

Hint: Keep your answers brief. We are looking for a reduction to known data structure,
perhaps with additional minor modifications.

(a) (10 points) The data is a set of n points P in R
2. The query is an axis-aligned rectangle

Q = [x0, x1] × [y0, y1]. The answer to the query is the area of the smallest axis-aligned
rectangle that contains all the points of P ∩Q (see Fig. 4(a)).

q

q′

(a) (b)

x

y

y0

y1

x0 x1

Ans = area of this
rectangle

Q

x

y

Ans to (b) = 0

Ans to (c) = false

Ans to (b) = 2

Ans to (c) = true

1

1

Figure 4: Geometric queries.

(b) (10 points) The data is a set S of n axis-aligned unit squares in R
2 (that is, each has

side length 1). The query is a point q = (qx, qy). The answer to the query is the number
of squares of S that contain q (see Fig. 4(b)).

(c) (10 points) The data set is again a set S of n axis-aligned unit squares in R
2 (that is,

each has side length 1). The query is a point q = (qx, qy). The answer to the query is
true if q lies in the union of the squares and false otherwise (see Fig. 4(b)).

Problem 4. (20 points) For each of the following range spaces, derive its VC-dimension and prove
your result. (Note that in order to show that the VC-dimension is k, you need to give an
example of a k-element subset that is shattered and prove that no set of size k + 1 can be
shattered.) Throughout, you may assume that points are in general position.

Hint: Proving the upper bound on the VC-dimension can involve multiple cases. Do your
best to explain what the relevant cases are, but don’t bother proving each one formally. For
each case, you can give a short one-sentence explanation (or draw a picture) to explain which
subsets cannot be generated.

(a) (8 points) Σ = (R2,S), where S consists of parallelograms having two horizontal sides
and two sides that have a slope of 1 (see Fig. 5(a)).

3

(a) (b)

45◦

Figure 5: VC-Dimension of some range spaces.

(b) (12 points) Σ = (R2,P), where P consists of parallelograms having two horizontal sides
and two sides of arbitrary (nonzero) slope (see Fig. 5(b)).

Problem 5. (20 points) You are given a set P of n points in R
d and a real δ > 0. The objective

of a δ-distance query is to return a count of all the pairs of distinct points x, y ∈ P , such that
∥x− y∥ ≤ δ. Given 0 < ε < 1, in an ε-approximate δ-distance query, your count must include
all pairs such that ∥x−y∥ ≤ δ, and it must not include any pair such that ∥x−y∥ > (1+ ε)δ.
Pairs of points whose distances lie between these two bounds may or may not be counted, at
the discretion of the algorithm.

Explain how to preprocess P into a data structure so that ε-approximate distance counting
queries can be answered in O(n/εd) time and O(n/εd) space.

Hint: Use a well-separated pair decomposition. Explain clearly what separation factor is
used and what modifications are needed to the WSPD construction. It is not necessary to
derive the tightest possible bound on the separation factor, but formally justify your choice.

4

