CMSC 754: Fall 2023 Dave Mount

Homework 1: Convex Polygons and Plane Sweep

Handed out Tuesday, Sep 12. Due by the start of class on Thursday, Sep 21. (Submissions will
be through Gradescope. Submission information will be forthcoming.) Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed
by the due date. Unless otherwise specified, you may assume that all inputs are given in general
position. Listed point values are subject to change.

Problem 1. (10 points) You are given a set of four points in the plane {p1,...,ps}, where p; =

(a) (5 points) Present an efficient boolean function quadSeq(p1,p2,ps3,p4) (in pseudocode)
that determines whether this sequence of points define the vertices of a convex quadri-
lateral in cyclic order (either clockwise or counterclockwise).

(b) (5 points) Present an efficient boolean function quadSet(p1,p2, ps,p4) (in pseudocode)
that determines whether this set of points define the vertices of a convex quadrilateral
in any order.

In this problem you may not assume that points are in general position. If any three points
are collinear, then both of the above functions should return false (see Fig. [1| for some
examples.)

quadSeq(p4, p3, pl, p2) — true
quadSeq(pl, p3, p4, p2) — true

quadSeq(pl, p4, p3, p2) — false All quadSeq calls return false

All quadSet calls return true All quadSet calls return false
D1

& R b3

D3
¢ *p2 p1, . p2,
D3 .
Y2

" D4

" P2 *Dp1

Figure 1: Examples of return results for quadSeq and quadSet.

As with any procedure, you may create variables to store intermediate values or define addi-
tional subroutines. Explain how your procedure works in English and justify its correctness.
For full credit, your procedure should be based solely on orientation tests involving these
four points. (E.g., a comparison of the form “if (orient(pl, p2, p4) < 0)” is valid, but
“if (x1 < x2)” is not.) You should not invoke any convex hull algorithms (like Graham’s
algorithm). Try to do it with the smallest possible number of orientation tests. In each case,
indicate how many orientation tests your procedure makes in the worst case.

Hint: Your answer to (b) is allowed to invoke your answer to (a). For quadSet, I think that
a good way to start would be to fix two points, say p; and ps, and check whether the other

two points share the same orientation with respect to them, that is, “if (orient(pl, p2,

p3)

== orient(pl, p2, p4))”.)

Problem 2. (15 points) Define a chord of a convex polygon to be any line segment pg where p
and ¢ are points on P’s boundary (see Fig. (a)). Given a convex polygon P, we say that a
parallelogram @ circumscribes P if it tightly encloses P. That is, P is contained within @,
and each of Q’s sides touches P (see Fig. 2f(b)). If Q circumscribes P, then for each pair of
parallel sides of @), there will be at least one chord common to both P and @ that is incident
to the these two sides (as with pq in Fig. [2(b)). This is called a common chord.

A circumscribing parallelogram is perfect if for each pair of parallel sides of @), there is a
common chord incident to these two sides that is parallel to Q’s other sides (see Fig. [2(c)).
A circumscribing parallelograpm is half-perfect if there exists one such chord (see Fig. 2[(d)).

(2)

Figure 2: (a) A chord, (b) circumscribing parallelogram and common chords, (c) a perfect paral-
lelogram (where chords pg and p/q’ are parallel to @’s sides), and (d) a half-perfect parallelogram

for P.

(a)

()

(5 points) Prove that for any convex polygon P, there exists a half-perfect parallelogram
where two of its sides are horizontal (that is, parallel to the z-axis) and the common
chord is also horizontal (see Fig. 2fc)).

(Hint: Two approaches come to mind. One is based on varying the slopes of the non-
horizontal sides of the parallelogram and showing that some slope yields a horizontal
common chord. The other is based on varying the y-coordinate of the horizontal chord
of P and showing that for some y-value, there a parallelogram that shares this chord.)

(2 points) Prove that if P is in general position, the half-perfect parallelogram is unique.
We will accept either of two answers. First, you can prove that multiple common chords
(even if there is a unique half-perfect parallelogram) implies a violation of general posi-
tion, or second, you can prove that multiple half-perfect parallelograms (even if there is
a unique common chord) implies a violation of general position.

(8 points) Present an O(n) time algorithm which given a convex polygon P in general
position, computes the half-perfect parallelogram described in parts (a) and (b). (If you
can see how to do this faster, check out the Challenge Problem)

Problem 3. (10 points) The objective of this problem is to explore a natural adaptation of the
notion of convex hulls to rectilinear objects. An axis-parallel rectangle is formally defined as

the Cartesian product of two nonempty, closed intervals, one along the z-axis and one along
the y-axis, that is 7 = [a,b] X [¢,d], where a < b and ¢ < d (see Fig. [3{a)).

You are given a collection of n axis-parallel rectangles in the plane R = {rq,...,7,}, where

r; =

[ai, bi] % [c;,d;]. Let R denote the union of these rectangles, that is, R = (J;_; r;. It will

be convenient to assume that R is path connected, which means that any two points p,q € R
are connected by a path that lies entirely within R (see Fig. [3{(b)).

PR - — 1
r=la,b] x [c,d] ImHEE |
[H] | - 1]
Y / =g h I =2 C I :Ej-
d -
C—— F |~.|J - l i staircase curve

c i =

a p L

(a) (b) (c)
Figure 3: (a) An axis-parallel rectangle, (b) a path-connected set of rectangles, and (c) the orthog-

onal hull and one of its southeast staircase curve.

We say that a set H is orthogonally convex if the intersection of any horizontal or vertical

line

with H is either empty or a single line segment. The orthogonal hull of a set is defined

to be the smallest orthogonally convex set that contains the set (see Fig. [3{c)).

(a)

(b)

(8 points) Present an efficient algorithm which, given a set R = {ry,...,r,} of axis-
parallel rectangles, computes the orthogonal hull of R. The output of your algorithm
consists of a counterclockwise sequence of edges that form the boundary of the hull.
You may assume that the rectangles are in general position (and in particular, no two
rectangles share the z- or y-coordinates) and their union is path connected. Explain
your algorithm and derive its running time.

(Hints: It is a fact (which you do not need to prove) that the boundary of the orthogonal
hull of a path-connected set of orthogonal rectangles can be divided into four “staircase
curves”, connecting the leftmost and rightmost vertical edges with the top and bottom
horizontal edges (see Fig. [3|(c)). Present an algorithm to build any one of these staircase
curves, and argue that the others follow from symmetry. Finally, combine the four
staircases to form the final output. Try plane sweep. You should aim for an overall
running time of O(nlogn).)

(2 points) In the problem description, we made the convenience assumption that R is
path connected. Show (by giving an example and an explanation) that if this were not
true, the orthogonal hull might consist of multiple connected components.

Problem 4. (15 points) We are given a set of axis-parallel rectangles R = {r1,...,7,} in the plane,
where r; = [a;,b;] X [ci,d;]. All the rectangles lie within a horizontal strip S = {(z,y) | 0 <

y <

1} (see Fig. [d[a)).

In this application we imagine that water is flowing along the “stream” S from left to right,

and

it must flow around the rectangular “rocks” of R. The question is whether any water

can make it through, or do the rocks effectively block all the flow. Present an algorithm
which, given R, returns true or false, depending on whether there exists a z-monotone
path through S that avoids all the rectangles of R. (Such a path does exist in the example
of Fig. [f|b) but not in the case of Fig. [4c)).

Present an efficient algorithm that solves the problem. You may make the general position
assumption that, except for y = 0 and y = 1, no two rectangles have the same z- or y-
coordinates. Explain your algorithm and derive its running time. (Hint: Use plane sweep.
Aim for a running time of O((n + m)logn), where m is the total number of edge-to-edge
intersections among the sides of the rectangles. I believe that it is possible to improve this to
O(m+nlogn), but you make need to make some additional assumptions about your ordered
dictionary.)

Not allowed.

Must be
1 z-monotone

(a) (b) (c)

Figure 4: Does there exist an z-monotone path that avoids all the rectangles?.

Challenge Problem 1: Show that it is possible to solve Problem 2(c) in sublinear time. Explain
your algorithm and derive its running time.

Challenge Problem 2: Given a convex polygon P, let @) be a parallelogram of minimum area
that encloses P. Prove that Q must be perfect. (Hint: Show how to perturb any non-perfect
parallelogram to form a new parallelogram enclosing P but with smaller area.)

Challenge Problem 3: Can you solve Problem 4 in O(nlogn) time, irrespective of m? (I honestly
do not know, so this may be quite challenging!)

Some tips about writing algorithms: Throughout the semester, whenever you are asked to
present an “algorithm,” you should present three things: the algorithm, an informal proof of its
correctness, and a derivation of its running time. Remember that your description is intended
to be read by a human, not a compiler, so conciseness and clarity are preferred over technical
details. Unless otherwise stated, you may use any results from class, or results from any standard
textbook on algorithms and data structures. (If the source is from outside of class, you must cite
your sources.) Also, you may use results from geometry that: (1) have been mentioned in class,
(2) would be known to someone who knows basic geometry or linear algebra, or (3) is intuitively
obvious. If you are unsure, please feel free to check with me.

Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are en-
couraged to use intuition and give illustrations whenever appropriate. Beware, however, that a
poorly drawn figure can make certain erroneous hypotheses appear to be “obviously correct.”

Throughout the semester, unless otherwise stated, you may assume that input objects are in
general position. For example, you may assume that no two points have the same z-coordinate,
no three points are collinear, no four points are cocircular. Also, unless otherwise stated, you
may assume that any geometric primitive involving a constant number of objects each of constant
complexity can be computed in O(1) time.

