
CMSC 754: Fall 2023 Dave Mount

Homework 2: LP, Point Location, and Voronoi Diagrams

Handed out Tuesday, Oct 3. Due: 9:30am, Tuesday, Oct 17 (submission through Gradescope).
No late homeworks will be accepted, so please turn in whatever you have completed by the due
date. Unless otherwise specified, you may assume that all inputs are given in general position. Also,
when asked to give an algorithm with running time O(f(n)), it is allowed to give a randomized
algorithm with expected running time O(f(n)).

Problem 1. (20 points) Explain how to solve each of the following problems in linear (expected)
time. Each can be modeled by reduction to linear programming (LP), perhaps involving
multiple instances along with some additional pre- and/or post-processing. See the remarks
at the end of the homework on how to present LP reductions.

Note that both problems involve obstacle avoidance. We allow the trajectory to pass through
the boundary points of the obstacles. (This is necessary for LP, since it assumes that the
constraints are closed halfspaces.)

(a) (10 points) In your new career as a professional miniature golf player, you are working
on a program to compute your best initial shot on a tricky hole. Let’s model this
as a rectangle of height w and length ℓ whose lower left coordinate is the origin (see
Fig. 1(a)). There are a series of line segment obstacles that need to be avoided, each
growing perpendicularly out from one of the rectangle’s sides. The input consists of
points A = {a1, . . . , am} and B = {b1, . . . , bn} (both unsorted), where ai = (ai,x, ai,y),
and bj = (bj,x, bj,y). The points of A are the endpoints of the segments ascending up
from the rectangle’s bottom edge and the points of B are the endpoints of the segment
descending from the top edge. The ball must travel from the left edge to the right edge
of the rectangle without intersecting any of the obstacles (see Fig. 1(b)).

(a)

w

ℓ

aibj
c d

(b)

Figure 1: Miniature golf.

The final trajectory of the shot is given by two scalars, c and d, which denote the y-
coordinates along the rectangle’s left and right sides, respectively, through which the ball
passes (see Fig. 1(a) lower). You do not expect to hit the hole on the first shot. Instead,
you objective is to get the ball as close to the center as possible. In particular, you want
the value of d where the ball exits the rectangle to be as close to w/2 as possible.

Present an algorithm which determines whether a straight-line path exists from the
left to right edge of the rectangle that avoids all the obstacles. If such a path exists,
determine the trajectory that places d as close as possible to w/2. Your algorithm should
run in expected time O(m+ n).

1



(b) (10 points) After your golf career failed, you turn to (indoor) tennis. You want to
determine how best to hit a lob shot, which travels high enough to avoid the players on
the other side of the net but low enough to avoid hitting lighting fixtures hanging from
the ceiling. Let’s just consider the problem in two-dimensional space, where the floor is
the x-axis, and the y-axis is vertical (see Fig. 2(a)). The lob needs to clear the net, which
is of height h along the y-axis. The lob needs to pass above positions likely occupied by
the opposing player, which are given as a set of points P = {p1, . . . , pm}, and it must
pass below a set of locations of light fixtures Q = {q1, . . . , qn}, where pi = (pi,x, pi,y),
and qj = (qj,x, qj,y). (Both sets are unsorted.) Finally, it needs to land within the court,
which is of length ℓ.

(b)
ℓ

h

qj
pi

(a)
ℓ

h

net

Figure 2: Tennis.

By standard physics, the shot will travel along a parabolic path, given by the equation
y = −gx2 + bx + c of a parabola, where g is a fixed positive constant determined by
the force of gravity (e.g., 32 ft/sec2), and reals b and c are based on the initial location,
direction, and speed with which the ball is hit. Present an algorithm which determines
whether it is possible to find real values b and c to satisfy all the following requirements
(see Fig. 2(b)). The ball’s trajectory must:

(a) pass above the net of height h along the y-axis

(b) pass above all the opposing player points in P

(c) pass below all the lighting fixture points in Q

(d) land on the ground within the court (within distance ℓ of the net)

If such a shot is exists, return the one that travels as high as possible above the net
along the y-axis. Your algorithm should run in expected time O(m+ n).

Problem 2. (10 points) Consider the segments shown in Fig. 3.

(a) (2 points) Show the (final) trapezoidal map for these segments, assuming they are in-
serted in the order ⟨s1, s2, s3⟩. (We have given you the map after inserting the first two
segments, so you only need to show the result after inserting s3.)

(b) (8 points) Show the point-location data structure resulting from the construction given
in class, assuming the insertion order from part (a). (We have given you the point-
location data structure after inserting s1 and s2, so you only need to show the result
after inserting s3.) We will give partial credit if your data structure works correctly,
even though it does not match the construction given in class.

2



p1

t1

p2 t2

s1

s2
A

B

C
F

D E G

s2

p2

A

B

C

D F

s1

E

s2 G

t1

p1

t2
B

p1

t1

p2 t2

s1

s2

p3
t3

s3

(a) (c)(b)

Figure 3: Trapezoidal map and point location.

Please follow the convention given in class for the node structure. (In particular, for
y-nodes, the left (resp., right) child corresponds to the region above (resp., below) the
segment.)

Problem 3. (10 points) After your tennis career failed, you have decided to return to miniature
golf. Given the same hole structure as in Problem 1(a), you want to know which obstacle
your ball will hit first for a given shot.

The setup is the same as before. The input consists of a w × ℓ rectangle with origin at the
lower-left corner and point sets A and B defining the lower and upper obstacle endpoints, of
sizes m and n, respectively, where ai = (ai,x, ai,y), and bj = (bj,x, bj,y) (see Fig. 4(a)).

(a)

bj

y = 0

y = w

ai

(b)

bj

c u
ai

(c)

bj
ai

c u

c u

Figure 4: Golf shooting queries.

Your golf shot is determined by two quantities (see Fig. 4(a))

� the y-coordinate c along the left edge of the rectangle where your shot starts, and

� a directional vector u = (ux, uy) of a ray along which the shot travels.

Your objective is to preprocessA andB into a data structure so that given the triple (c, ux, uy),
you can efficiently determine which obstacle is hit first (or if no obstacle is hit, does the ball hit
the upper, lower, or right side of the rectangle). You may assume that 0 ≤ c ≤ w and ux > 0.
Your data structure should use O(n+m) space and answer queries in time O(log(n+m)). It
suffices to just explain how the reduction is performed and justify its correctness, query time,
and space requirements. (You do not need to explain how to compute the segments nor how
to construct the point-location data structure.)

3



Hint: Begin by extracting the equation for the line ℓ carrying the query ray. Then show
that by applying duality, this problem can be reduced to a point-location in R2 where the
segments are determined by the obstacle vertices A and B. Although I believe you can do
this with one data structure, it may be simpler to describe two data structures, one for A
and the other for B, and then combine the results.

Problem 4. (10 points) It is sometimes of interest to compute the Voronoi diagram of a set of
sites, but we are only interested in a portion of the final diagram. In this problem, we’ll
consider how to compute the Voronoi diagram of a set of points in R2, but restricted to a
given line ℓ. By rotating and translating space, we may assume that ℓ is aligned with the
x-axis.

You are given a sequence of n sites in the plane P = ⟨p1, . . . , pn⟩ sorted in increasing order of
their x-coordinates (see Fig. 5(a)). Present an algorithm that computes the Voronoi diagram
of P , but restricted only to x-axis. (We don’t care about the portion of the diagram lying
above or below the axis.)

Observe that the diagram is a sequence of intervals that subdivide the x-axis. The output
consists of a sequence of (at most n−1) endpoints of the segments ⟨x1, . . . , xm⟩, and each edge
is labeled with the index of the associated site corresponding to this interval (see Fig. 5(b)).
Your algorithm should run in O(n) time. (Hint: Start by proving that the left-to-right order
of the labels along the x-axis is consistent with the left-to-right order of the sites.)

(a) (b)

ℓ1 4 7 8 10 11

ℓ
p1

p2

p3

p5

p4

p6

p7 p8
p10

p9

p11

p12

x1 x3 x5x2 x4

Output

Figure 5: Restriction of a Voronoi diagram to a line.

Challenge Problem. You are given a collection of n nonintersecting circular disks in the plane,
each of radius r1 called obstacles. Let P = {p1, . . . , pn} denote their center points. You are
also given a radius value r2 and two points s and t (see Fig. 6(a)).

Present an efficient algorithm which, given the obstacles along with s, t, and r2, determines
whether it is possible to move the disk of radius r2 from s to t without intersecting any of
the obstacle disks (see Fig. 6(b)). Ideally, your algorithm should run in O(n log n) time. If
there does not exist such a path (including the case where the initial or final positions are
invalid), then indicate this. Otherwise, your algorithm should output any such path, say, as
a polygonal chain from s to t. (Hint: Use Voronoi diagrams.)

Guidance for Writing LP Reductions: In an linear programming (LP) reduction, you should
explain the following:

4



(a) (b)

s t
r2

s t

Figure 6: Can you move a disk of radius r2 from s to t while avoiding the obstacles?

� how the solution space is modeled as a vector (and in what dimension),

� what are the constraints,

� what is the objective function (and express it as a vector)

� how to interpret the result (including the cases feasible, unbounded, infeasible)

Here is an example.

Sample Problem: Present an efficient algorithm which given two sets of pointsR = {r1, . . . , rn}
and B = {b1, . . . , bn}, both in R3, determines whether their exists a plane h in R3 such
that all the points of R lie on or above h and all the points of B lie on or below h.

Sample solution: We reduce the problem to linear programming in R3. Let’s assume that
each ri ∈ R is given in coordinate form as (ri,x, ri,y, ri,z) and similarly for B. Let’s model
h by the equation z = ax + dy + e, for some real parameters a, d, and e. To enforce
the condition that each ri lies on or above h and each bj lies on or below it, we add the
constraints

ri,z ≥ ari,x + dri,y + e, for 1 ≤ i ≤ n

bj,z ≤ abj,x + dbj,y + e, for 1 ≤ j ≤ n.

We then invoke LP with 2n constraints in R3 (with the variables (a, d, e)). Since this
is a yes-no answer, we don’t really care about the objective function. We can set it
arbitrarily, for example, “maximize e” (which is equivalent to using the objective vector
c = (0, 0, 1)).

If we wish to be even more formal (which is not usually required), we can express the
LP in standard form as maximizing cT form as Ax ≤ b, where x is the symbolic vector
(a, d, e) ∈ R3, and A and b can be expressed as

r1,x r1,y 1
...

...
...

rm,x rm,y 1
−b1,x −b1,y −1

...
...

...
−bn,x −b1,y −1


ad
e

 ≤



r1,z
...

rm,z

−b1,z
...

−bn,z


5



We interpret the LP’s result as follows. If the result is “infeasible”, then we know that no
such plane exists. If the answer is “feasible” or “unbounded”, then we assert that such
a plane exists (assuming general position). This is clearly true if the result is “feasible”,
since we can just take h to be the plane associated with the optimum vertex (a, d, e).
If the result is “unbounded”, then the plane is vertical, but there exists a perturbation
such that R lies above and B lies below.

6


