
CMSC 754: Fall 2023 Dave Mount

Homework 4: WSPDs, Sampling, and Motion Planning

Handed out Tue, Nov 28. Due, Thu, Dec 7, 9:30am. Late homeworks are not accepted (unless
an extension has been prearranged) so please turn in whatever you have completed by the due
date. Unless otherwise specified, you may assume that all inputs are in general position. Whenever
asked to give an algorithm running in O(f(n)) time, you may give a randomized algorithm whose
expected running time is O(f(n)).

Problem 1. (15 points) This problem involves a couple problems related to computing the statis-
tics on a sets of n points P in Rd. Each can be solved with the use of WSPDs. In each case,
assume that you have access to a subroutine that can compute an s-WSPD of size O(sdn)
for any set of n points in Rd in time O((n log n) + sdn). As we did in class, assume that
the WSPD is represented as a set of pairs of nodes from a quadtree for P . Each node of
the quadtree can store auxiliary information about the points lying within it subtree (e.g.,
a representative point, the number of points, or any additional statistics involving just these
points).

In your answer, you should explain (i) what separation value do you use, (ii) what auxiliary
information is stored in each node of the quadtree to help you, (iii) prove your algorithm’s
correctness, and (iv) indicate its running time.

(a) (5 points) Given a point set P = {p1, . . . , pn} ⊂ Rd and 0 < ε < 1 the average interpoint
distance is defined to be

∆(P ) =
1(
n
2

) ∑
1≤i<j≤n

∥pi − pj∥.

Computing this naively would take O(n2) time. Present an efficient WSPD-based al-
gorithm that computes an ε-approximation to ∆(P ). It computes a value ∆̃(P ) such
that

1

1 + ε
∆(P ) ≤ ∆̃(P ) ≤ (1 + ε)∆(P ).

(b) (10 points) Solve (a), but this time with the generalization that we want to compute the
average of the kth powers of the distances. Given an integer k ≥ 1, define

∆[k](P ) =
1(
n
2

) ∑
1≤i<j≤n

∥pi − pj∥k.

(This is also known as the kth moment of the interpoint distance.) Assuming that k
is a constant (independent of d or n) present an efficient WSPD-based algorithm that
computes an ε-approximation to ∆(P ). It computes a value ∆̃[k](P ) such that

1

1 + ε
∆[k](P ) ≤ ∆̃[k](P ) ≤ (1 + ε)∆[k](P ).

(Hint: The structure is essentially the same as part (a). It will be helpful to have an
approximation for (1 + ε)k, assuming 0 < ε < 1. For this, it is useful to recall the
Binomial Theorem, (a+ b)k =

∑k
i=0

(
k
i

)
aibk−i.
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Problem 2. (10 points) While coresets provide close approximations to some statistic of interest,
it is often useful to have an easily computable lower bound or upper bound, that is just within
a constant fraction of the exact value. In this problem, we’ll consider a crude lower bound
for the weight of the Euclidean minimum spanning tree in Rd. Recall that in dimensions 3
and higher, computing the Euclidean minimum spanning tree exactly takes nearly quadratic
time.

You are given a set of n points P = {p1, . . . , pn} ⊂ Rd. Let emst(P ) denote the weight of
P ’s Euclidean minimum spanning tree. We will compute our lower bound as follows. Place
the points of P in a unit square grid, that is, a grid of hypercubes, each of side length 1 (see
Fig. 1(a)). Let N(P ) denote the number of grid squares that contain at least one point of P .

N(P ) = 14 m = 6
1

(a) (b) (c)

1

Figure 1: Lower bound for Euclidean minimum spanning tree.

Prove that there exist positive constants ad and cd (depending on the dimension d, but not
on n), such that if N(P ) ≥ ad then

emst(P ) ≥ N(P )

cd
.

It is not necessary to derive the best values of ad and cd, but as a hint, both quantities vary
exponentially with d.

Hint: This can be done in two parts. For the first part, let G(P ) denote the grid squares that
contain at least one point of P , meaning that N(P ) = |G(P )|. (These are the yellow squares
in Fig. 1(a)). Show that if N(P ) is sufficiently large (depending on d) there is a subset of
G(P ) containing at least a constant fraction of squares, so that no two of these squares have
boundaries that touch each other. (These are the gray squares in Fig. 1(b)). For the second
part, show that if you are given any set of m unit grid squares, where no two have boundaries
that touch, then any spanning tree connecting these squares has weight at least m − 1 (see
Fig. 1(c)). Finally, explain how these two facts can be combined to prove the lower bound on
emst(P ).

Problem 3. (15 points) The objective of this problem is to investigate the VC-dimension of some
range spaces. Recall that a range space Σ is a pair (X,R), where X is a (finite or infinite)
set, called points, and R is a (finite or infinite) family of subsets of X, called ranges.

For each of the following range spaces, derive its VC-dimension and prove your result. (Note
that in order to show that the VC-dimension is k, you need to give an example of a k-element
subset that is shattered and prove that no set of size k + 1 can be shattered.) Throughout,
you may assume that points are in general position.
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(a) (5 points) Σ = (R2,U), where U consists of all orthogonal U-shaped ranges. An orthog-
onal U-shaped range is defined by three numbers (x0, x1, y0). It is the region bounded
between the two vertical lines x0 ≤ x ≤ x1 and above a horizontal line y ≥ y0 (see
Fig. 2(a)).

(b) (10 points) Σ = (R2,V), where V consists of all orthogonal V-shaped ranges. An orthog-
onal V-shaped range is defined by four numbers (x0, x1, a, b). It is the region bounded
between the two vertical lines x0 ≤ x ≤ x1 and above a line y ≥ ax+ b (see Fig. 2(b)).

(a) (b)

x0 x1

y0

x0 x1

y = ax + b

Figure 2: VC-Dimension of some range spaces.

Problem 4. (10 points) Let us consider a motion planning problem in the plane involving a set
of rectangular obstacles and a translating “L”-shaped robot (see Fig. 3(a)). The robot R
is an “L”-shaped polygon as shown in Fig. 3(b). Its reference point is its lower-left corner.
The obstacles consist of a collection of non-intersecting rectangles {O1, . . . , On}, where Oi

has lower-left corner pi and horizontal length ℓi and vertical height hi (see Fig. 3(c)).

You are given a start point s and target point t. Assuming the robot’s reference point starts
at s, is there an obstacle-avoiding motion that terminates with the endpoint at t? In this
problem will explore a solution to this problem.
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Figure 3: L-shaped robot motion planning.

(a) (5 points) Given an obstacleOi, provide a clear description and a picture of the associated
C-obstacle (its shape, side lengths, and location).

(b) (5 points) Given the starting and target points s and t, sketch an algorithm for determin-
ing whether there is a collision-free translational motion of the robot with its reference
point starting at s and ending at t.
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A high-level sketch of the algorithm is sufficient. To make your life simpler, you may
assume that you are given a procedure that will input the C-obstacles from part (a),
compute their union, and returns a convenient decomposition of free-space (e.g., as a
trapezoidal map). Your algorithm should be efficient, in the sense that its running time
should be roughly proportional to the combinatorial complexity of the free space, that
is, the union of the C-obstacles. (See the Challenge Problem.)

Challenge Problem. Recalling the setup in Problem 4, what is the worst-case combinatorial
complexity of the free space, that is, the union of all the C-obstacles? You may select any
values you like for the robot’s dimensions (h, ℓ, and w), and you may place the n rectangles
anywhere you like. Justify your answer.
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