
CMSC 754 Dave Mount

CMSC 754: Lecture 7
Linear Programming

Reading: Chapter 4 in the 4M’s. The original algorithm was given in R. Seidel. Small-dimensional
linear programming and convex hulls made easy, Discrete and Computational Geometry, vol 6, 423–
434, 1991.

Linear Programming: One of the most important computational problems in science and engi-
neering is linear programming, or LP for short. LP is perhaps the simplest and best known
example of multi-dimensional constrained optimization problems. In constrained optimiza-
tion, the objective is to find a point in d-dimensional space that minimizes (or maximizes)
a given objective function, subject to satisfying a set of constraints on the set of allowable
solutions.

Linear programming is perhaps the simplest example of a constrained optimization problem,
since both the constraints and objective function are linear functions. In spite of this apparent
limitation, linear programming is a very powerful way of modeling optimization problems.
Typically, linear programming is performed in spaces of very high dimension (hundreds to
thousands or more). There are, however, a number of useful (and even surprising) applications
of linear programming in low-dimensional spaces.

A Bit of History: The problem of solving a system of linear inequalities dates back to at least
the 1800’s, where it was studied by Joseph Fourier (of “Fourier Transform” fame). Serious
study of linear programming started in the 1940’s where it was developed (independently) by
Soviet mathematician and economist Leonid Kantorovich and George Dantzig and John von
Neumann. Dantzig developed the simplex algorithm, which provided a practical method for
solving large1 instances of LP.

While simplex is fast in practice, it is known that it can take exponential time. In his original
list of NP-hard problems, Richard Karp listed LP as one of the major open problems that are
not known to be solvable in polynomial time or NP-hard. In 1979, Leonid Khachiyan had a
major breakthrough by showing that LP could be solved in (weakly) polynomial time through
a method called the ellipsoid algorithm. The term “weakly” means that the running time is
polynomial not only in the input size, but also in the number of bits in the numbers involved.
The ellipsoid algorithm was primarily of theoretical interest, but in 1984 Narendra Karmarkar
developed a class of (also weakly polynomial) algorithms called interior-point methods. These
are quite practical, and are widely used today.

The question of whether there is a (strongly) polynomial time algorithm for LP is among
the most important open problems in computer science (right up there with P = NP ). In
this lecture, we will discuss a linear time algorithm for LP, but with the constraint that the
dimension is a fixed constant.

Problem Definition: Formally, in linear programming we are given a set of linear inequalities,
called constraints, in real d-dimensional space Rd. Given a point (x1, . . . , xd) ∈ Rd, we can

1Well, back in the 1940’s, solving 100 inequalities was considered “large”! But today, this algorithm solves instances
involving hundreds of thousands constraints.

Lecture 7 1 Fall 2023



CMSC 754 Dave Mount

express such a constraint as a1x1 + . . . + adxd ≤ b, by specifying the coefficient ai and b.
(Note that there is no loss of generality in assuming that the inequality relation is ≤, since
we can convert a ≥ relation to this form by simply negating the coefficients on both sides.)
Geometrically, each constraint defines a closed halfspace in Rd. The intersection of these
halfspaces intersection defines a (possibly empty or possibly unbounded) polyhedron in Rd,
called the feasible polytope2 (see Fig. 1(a)).

(a)

feasible
polytope

feasible
polytope

c

optimal
vertex

(b)

Fig. 1: 2-dimensional linear programming.

We are also given a linear objective function, which is to be minimized or maximized subject
to the given constraints. We can express such as function as c1x1 + · · · + cdxd, by speci-
fying the coefficients ci. (Again, there is no essential difference between minimization and
maximization, since we can simply negate the coefficients to simulate the other.) We will
assume that the objective is to maximize the objective function. If we think of (c1, . . . , cd) as
a vector in Rd, the value of the objective function is just the projected length of the vector
(x1, . . . , xd) onto the direction defined by the vector c. It is not hard to see that (assuming
general position), if a solution exists, it will be achieved by a vertex of the feasible polytope,
called the optimal vertex (see Fig. 1(b)).

In general, a d-dimensional linear programming problem can be expressed as:

Maximize: c1x1 + c2x2 + · · ·+ cdxd
Subject to: a1,1x1 + · · ·+ a1,dxd ≤ b1

a2,1x1 + · · ·+ a2,dxd ≤ b2
...
an,1x1 + · · ·+ an,dxd ≤ bn,

(1)

where ai,j , ci, and bi are given real numbers. This can be also be expressed in matrix notation:

Maximize: cTx,
Subject to: Ax ≤ b.

2To some geometric purists this an abuse of terminology, since a polytope is often defined to be a closed, bounded
convex polyhedron, and feasible polyhedra need not be bounded.

Lecture 7 2 Fall 2023



CMSC 754 Dave Mount

where c and x are d-vectors, b is an n-vector and A is an n× d matrix. Note that c should be
a nonzero vector, and n should be at least as large as d and may generally be much larger.

There are three possible outcomes of a given LP problem:

Feasible: The optimal point exists (and assuming general position) is a unique vertex of the
feasible polytope (see Fig. 2(a)).

Infeasible: The feasible polytope is empty, and there is no solution (see Fig. 2(b)).

Unbounded: The feasible polytope is unbounded in the direction of the objective function,
and so no finite optimal solution exists (see Fig. 2(c)).

feasible
polytope

optimal

c c

vertex

c

optimum

(a) (b) (c)

feasible infeasible unbounded

Fig. 2: Possible outcomes of linear programming.

In our figures (in case we don’t provide arrows), we will assume the feasible polytope is the
intersection of upper halfspaces. Also, we will usually take the objective vector c to be a
vertical vector pointing downwards. (There is no loss of generality here, because we can
always rotate space so that c is parallel any direction we like.) In this setting, the problem is
just that of finding the lowest vertex (minimum y-coordinate) of the feasible polytope.

Example – Separating Sets in the Plane: As an example of how LP can be used to solve
problems in computational geometry, consider the following question, which inspired from
Support Vector Machines (SVMs) in machine learning. We are given two sets of points R
(for red) and B (for blue) in R2 (see Fig. 3(a)). Let n denote the total number of points
between both sets. Define a corridor to be the region bounded between two parallel lines in
R2. Assuming the lines are not vertical, vertical width of the corridor is the vertical distance
between the two lines, or equivalently, the difference between their y-intercepts in the graphs
of the two lines. The problem is to compute the corridor of maximum vertical width that
separates the two points. There are two cases, B above and R below and vice versa. We can
explain how to solve just the first case, since the other case is symmetrical.

We will show that this problem can be reduced to LP in R3. First, let us denote the lines
bounding the corridor as ℓ+ : y = ex+f+ and ℓ− : y = ex+f−. We wish to the determine the
values of e, f+, and f− to maximize the difference in the y-intercepts, f+−f−, such that the
points of B lie above ℓ+ and the point of R lie below ℓ− (see Fig. 3(b)). Let P = {p1, . . . , pn}
be the points, where pi = (pi,x, pi,y). Let B = {p1, . . . , pm} and let R = {pm+1, . . . , pn}. The

Lecture 7 3 Fall 2023



CMSC 754 Dave Mount

(a) (b)

B

R
f+

f−

wB

R

ℓ+ : y = ex + f+

ℓ− : y = ex + f−

Fig. 3: Maximum vertical-width separating corridor.

constraint that the points of B lie above ℓ+ can be expressed as

pi,y ≥ epi,x + f+, for 1 ≤ i ≤ m,

and the constraint that the points of R lie below ℓ− can be expressed as

pj,y ≤ epj,x + f−, for m+ 1 ≤ j ≤ n.

The unknown values in the problem are e, f+, and f−, which can be expressed as a (symbolic)
column vector x = (e, f+, f−)T ∈ R3. The objective function is f+−f− = 0·e+1·f+−1·f− =
cTx, where cT = (0,+1,−1). We can rewrite the above constraints in the form expected by
Eq. (1) as follows

pi,x · e + 1 · f+ + 0 · f− ≤ pi,y, for 1 ≤ i ≤ m,

−pj,x · e + 0 · f+ + −1 · f− ≤ − pj,y, for m+ 1 ≤ j ≤ n.

This can be expressed as an LP in standard form as follows. Find x = (e, f+, f−)T that
maximizes cTx, where cT = (0,+1,−1) subject to the following constraints:

p1,x 1 0
...

...
...

pm,x 1 0
−pm+1,x 0 −1

...
...

...
−pn,x 0 −1


 e
f+

f−

 ≤



p1,y
...

pm,y

−pm+1,y
...

−pn,y


Along with the objective vector cT = (0,+1,−1), this is just an instance of LP in R3.

Our formulation contains a minor (subtle) error. The problem description implies that the
corridor has a nonnegative vertical width, that is, b+ ≥ b−. But we have done nothing to
enforce this. We could either add one additional constraint that b+ ≥ b−, or we could run the
LP, and test that this holds in the final answer. (Since we are maximizing b+ − b−, if there
is a positive-width solution, the LP will return it.) The original formulation always returns
a feasible answer. If we add the addition constraint that the width is nonnegative, the LP
might return “infeasible”. This happens if it is not possible to separate the two sets by any
line.

Lecture 7 4 Fall 2023



CMSC 754 Dave Mount

Solving LP in Spaces of Constant Dimension: While most instances of LP in practice in-
volve both large numbers of points and high dimensionality, there are a number of interesting
optimization problems that can be posed as a low-dimensional linear programming problem.
This means that the number of variables (the xi’s) is constant, but the number of constraints
n may be arbitrarily large.

The algorithms that we will discuss for linear programming are based on a simple method
called incremental construction. Incremental construction is among the most common design
techniques in computational geometry, and this is another important reason for studying the
linear programming problem.

(Deterministic) Incremental Algorithm: Recall our geometric formulation of the LP problem.
We are given n halfspaces H = {h1, . . . , hn} in Rd and an objective vector c, and we wish
to compute the vertex of the feasible polytope that is most extreme in direction c. Our
incremental approach will be based on starting with an initial solution to the LP problem for
a small set of constraints, and then we will successively add one new constraint and update
the solution.

In order to get the process started, we need to assume (1) that the LP is bounded and (2)
we can find a set of d halfspaces that provide us with an initial feasible point.3 For the sake
of focusing on the main elements of the algorithm, we will skip this part and just assume
that the first d halfspaces define a bounded feasible polytope (actually it will be a polyhedral
cone). The the unique point where all d bounding hyperplanes, h1, . . . , hd, intersect will be
our initial feasible solution.4 We denote this vertex as vd (see Fig. 4(a)). We will then add
halfspaces one by one, hd+1, hd+2, . . . , hn, and update the current optimal vertex after each
insertion. For 1 ≤ i ≤ n, let Hi = {h1, . . . , hi} denote the first i constraints, and let vi denote
the associated optimum vertex. Clearly, vn will be the final solution to the LP. (In our figures,
c points vertically downwards, so successive vi’s will move upwards as more constraints are
considered.)

c

h2h1

v2
c

vn−1

vn

hn

(a)

vn← vn−1
ℓn

(b) (c)

c

hn

Fig. 4: (a) Starting the incremental construction, (b) vn−1 is feasible for hn, and (c) vn−1 is not
feasible, (d) the importance ofthe proof that the new optimum lies on ℓn.

3In practice, LP designers know that their problem is feasible, and it is usually easy to create such a set of
constraints based on knowledge of the problem being solved. However, generating this starting set automatically
given just the inputs A, b, and c is an interesting exercise. Our textbook explains how to overcome these assumptions
in O(n) additional time.

4In typical CG style, we will not explain how this is done, but it reduces to solving a system of d linear equations
in Rd, which can be done in O(d3) time through Gaussian elimination.

Lecture 7 5 Fall 2023



CMSC 754 Dave Mount

Let’s do this by induction. Assume that we have already correctly computed vn−1, based on
the first n− 1 constraints Hn−1, and all that remains is to add the final constraint hn. (The
recursion bottoms out with vd.) There are two cases that can arise:

Feasible: (vn−1 ∈ hn) The optimum vertex does not change (see Fig. 4(b)). Set vn ← vn−1.

Conflict: (vn−1 /∈ hn) We need to update vn as described below (see Fig. 4(c))).

The key observation for updating the optimum is presented in the following claim, which
states that the new optimum vertex lies on the boundary of the new constraint.

Lemma: If after the addition of constraint hn the LP is still feasible but the optimum vertex
changes (conflict case above), then the new optimum vertex lies on the hyperplane
bounding hn.

Proof: Let ℓn denote the bounding hyperplane for hn. Let vn−1 denote the old optimum
vertex. Suppose towards contradiction that the new optimum vertex vn does not lie on
ℓn (see Fig. 5(a)). Since vn−1 /∈ hn and vn ∈ hn, the line segment vn−1vn must cross ℓn.
Let p = vn−1vn∩ℓn denote the crossing point. By convexity, the line segment vn−1vn lies
entirely within the feasible region after stage n− 1, and therefore p itself is feasible. By
linearity, the objective function decreases monotonically (gets better) as we walk from
vn to vn−1. Therefore p is a better solution than vn, a contradiction.

c
vn−1

vn?

(a)

ℓn

(b)

p

c

vn−1

hn

ℓn

vn

hn

Fig. 5: (a) Proof that the new optimum vertex lies on the newly added constraint, and (b) on the
importance of convexity.

Our algorithm will make critical use of the fact that the new optimum lies on ℓn. Convexity
is important since this may fail if the feasible region is not convex (see, e.g., Fig. 5(a)).

Recursively Updating the Optimum Vertex: Using this observation, we can reduce the prob-
lem of finding the new optimum vertex to an LP problem in one lower dimension. Let us
consider an instance where the old optimum vertex vn−1 does not lie within hn (see Fig. 6(a)).
Let ℓn denote the bounding hyperplane for the halfspace hn. We intersect each of the half-
spaces {h1, . . . , hn−1} with ℓn and project the results down one dimension to Rd−1. (For an
explanation of how this is done, see the remarks at the end of the lecture notes.) We do the
same for the objective function (see Fig. 6(b)). This yields an LP problem involving n − 1
halfspaces in dimension d−1, which we solve recursively. Finally, we “unproject” the solution
back onto ℓn to obtain the final solution vn (see Fig. 6(c).

Lecture 7 6 Fall 2023



CMSC 754 Dave Mount

vn−1

c
hn

vn

(a) (b)

ℓn

ℓn

c′

intersect with ℓn

c′′

project to Rd−1

Rd−1

vn

(c)

ℓn

c′

c′′
Rd−1

solve project back

Fig. 6: Reducing the problem one dimension lower.

The recursion “bottoms out” when we reach 1-dimensional space (see the bottom of Fig. 6(b)).
Each constraint is a simple inequality (either v ≤ ai or v ≥ ai), and the objective function
degenerates to simply “find the largest” or “find the smallest” feasible point. This is trivially
solvable in O(n) time. Since the original LP was bounded, the resulting 1-dimensional LP
will also be bounded, but it might be infeasible.

Worst-Case Analysis: What is the running time of this algorithm? It turns out that the running
time is sensitive to the order in which the halfspaces are inserted. (The complete algorithm is
described below.) Let’s consider what happens assuming the worst possible insertion order.

Since the algorithm is recursive, it is natural to express the running time as a recurrence. Let
Wd(n) denote the worst-case running time of our LP algorithm for n halfspaces in Rd. Recall
that we needed to begin by assuming that we have a bounded solution involving d halfspaces.
This fact will simply complicate the analysis, and so for the sake of setting the basis cases,
let’s assume that Wd(1) = 1 and W1(n) = n.

For general n and d, we begin by recursively computing the optimum LP solution for the
first n − 1 halfspaces, which takes Wd(n − 1) time. Next, we check whether the optimum
vertex vn−1 is feasible for the final halfspace hn. This can be tested in just O(d) time. If
it is feasible, we are done. Otherwise, we need to apply the projection process and invoke
a (d − 1)-dimensional LP on n − 1 halfspaces. The projection/unprojection process can be
carried out in time O(d(n − 1)) = O(dn). (See the remarks at the end of the notes.) By
induction, it takes Wd−1(n−1) time to compute the lower-dimensional LP. In the worst case,
the “conflict scenario” always occurs, meaning that each step takes time [dn+Wd−1(n− 1)].
Ignoring constant factors, this yields the following recurrence:

Wd(n) =


1 if n = 1,
n if d = 1,
Wd(n− 1) + d+

[
dn+Wd−1(n− 1)

]
otherwise.

The term inside the square brackets of the last case above represents the cost for processing
the conflict scenario. This algorithm is in fact not very efficient. A detailed ananlysis show
that its running time is Wd(n) = O(nd).5

5Here is a quick-and-dirty analysis, which will hopefully convince you that this claim is believable. Suppose we

Lecture 7 7 Fall 2023



CMSC 754 Dave Mount

Considering that n may be very large, a running time of O(nd) is unacceptably slow even in
R2. This worst-case analysis is based on the very pessimistic assumption that ever insertion
leads to the conflict scenario, where current optimum is not feasible for the newly added
constraint. But is this worst-case realistic? Next, we’ll consider a better strategy based on
simply randomizing the insertion order.

Randomized Algorithm: Suppose that we apply the above algorithm, but we insert the halfs-
paces in random order. (As mentioned above, we need to start with d halfspaces to obtain
our initial solution, but in our analysis, we will ignore this messy detail.) This is an example
of a general class of algorithms called randomized incremental algorithms. A description is
given in the code block below.

Randomized Incremental d-Dimensional Linear Programming
Input: A set H = {h1, . . . , hn} of halfspaces in Rd, such that the first d define an initial feasible vertex vd,
and the objective vector c.
Output: The optimum vertex v or an error status indicating that the LP is infeasible.

(1) If d = 1, solve the LP by brute force in O(n) time

(2) Find an initial subset of d halfspaces {h1, . . . , hd} that provide a bounded solution vd. (If no such set
exists, report that the LP is unbounded.)

(3) Randomly select a halfspace from the remaining set {hd+1, . . . , hn}. Call this hn. Recursively solve
the LP on the remaining n− 1 halfspaces, letting vn−1 denote the result. (If the LP is infeasible, then
return this.)

(4) If (vn−1 ∈ hn) return vn−1 as the final answer

(5) Otherwise, intersect {h1, . . . , hn−1} with the (d − 1)-dimensional hyperplane ℓn that bounds hn and
project onto Rd−1. Let c′ be the projection of c onto ℓn and then onto Rd−1. Recursively solve the
resulting (d − 1)-dimensional LP with n − 1 halfspaces. (If the LP is infeasible, then return this.)
Project the optimal vertex back onto ℓn, and return this point.

What is the expected case running time of this randomized incremental algorithm? Note that
the expectation is over the random permutation of the insertion order. In particular, make
no assumptions about the distribution of the input. (This is an important characteristic of
randomized algorithms. The performance might be affected by the random number generator,
but not the input the user gives us.)

The number of random permutations is (n − d)!, but it will simplify things to pretend that
we permute all the halfspaces, and so there are n! permutations. Each permutation has an
equal probability of 1/n! of occurring, and an associated running time. However, presenting
the analysis as sum of n! terms does not lead to something that we can easily simplify. We
will apply a technique called backwards analysis, which is quite useful.

Computing the Minimum (Optional): To motivate how backwards analysis works, let us con-
sider a much simpler example, namely the problem of computing the minimum of a list of
numbers. Suppose that we are given a sequence S of n distinct numbers. We permute the

were to ignore the “d + dn” term and replace the Wd−1(n − 1) with Wd−1(n). Then, we would have the recurrence
Wd(n) = Wd(n− 1) +Wd−1(n). Does this look familiar? It is essentially the same as Pascal’s famous recurrence for
the binomial coefficients,

(
n
d

)
=

(
n−1
d

)
+

(
n

d−1

)
. It is well known that

(
n
d

)
= O(nd), and so it is not surprising that we

essentially get the same asymptotic bound for our recurrence.

Lecture 7 8 Fall 2023



CMSC 754 Dave Mount

sequence and inspect them one-by-one. We maintain a variable that holds the smallest value
seen so far. If we see a value that is smaller than the current minimum, then we update the
current smallest. Of course, this takes O(n) time, but the question we will consider is, in
expectation how many times does the current smallest value change?

Below are three sequences that illustrate that the minimum may updated once (if the numbers
are given in increasing order), n times (if given in decreasing order). Observe that in the third
sequence, which is random, the minimum does not change very often at all.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 9 4 11 2 6 8 14 0 3 13 12 1 7 10

Let pi denote the probability that the minimum value changes on inspecting the ith number
of the random permutation. Thus, with probability pi the minimum changes (and we add 1
to the counter for the number of changes) and with probability 1 − pi it does not (and we
add 0 to the counter for the number of changes). The total expected number of changes is

C(n) =

n∑
i=1

(pi · 1 + (1− pi) · 0) =

n∑
i=1

pi.

It suffices to compute pi. We might be tempted to reason as follows. Let us consider a random
subset of the first i−1 values, and then consider all the possible choices for the ith value from
the remaining n− i+1 elements of S. However, this leads to a complicated analysis involving
conditional probabilities. (For example, if the minimum is among the first i − 1 elements,
pi = 0, but if not then it is surely positive.) Let us instead consider an alternative approach,
in which we work backwards. In particular, let us fix the first i values, and then consider the
probability the last value added to this set resulted in a change in the minimum.

To make this more formal, let Si be an arbitrary subset of i numbers from our initial set of
n. (In theory, the probability is conditional on the fact that the elements of Si represent the
first i elements to be chosen, but since the analysis will not depend on the particular choice
of Si, it follows that the probability that we compute will hold unconditionally.) Among
all the n! permutations that could have resulted in Si, each of the i! permutations of these
first i elements are equally likely to occur. For how many of these permutations does the
minimum change in the transition from Si−1 to Si? Clearly, the minimum changes only
for those sequences in which the smallest element of Si is the ith element itself. Since the
minimum item appears with equal probability in each of the i positions of a random sequence,
the probability that it appears last is exactly 1/i. Thus, pi = 1/i. From this we have

C(n) =

n∑
i=1

pi =

n∑
i=1

1

i
= lnn+O(1).

This summation
∑

i
1
i is the Harmonic series, and it is a well-known fact that it is nearly

equal to lnn. (See, e.g., the Wikipedia entry for Harmonic Series.)

Note that by fixing Si, and considering the possible (random) transitions that lead from
Si−1 to Si, we avoided the need to consider any conditional probabilities. This is called a

Lecture 7 9 Fall 2023

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)


CMSC 754 Dave Mount

backwards analysis because the analysis works by considering the possible random transitions
that brought us to Si from Si−1, as opposed to working forward from Si−1 to Si. Of course,
the probabilities are no different whether we consider the random sequence backwards rather
than forwards, so this is a perfectly accurate analysis. It’s arguably simpler and easier to
understand.

Backwards Analysis for Randomized LP: Let us apply this same “backwards” approach to
the analysis of the running time of the randomized incremental linear programming algorithm.
We will do the analysis in d-dimensional space. Let Td(n) denote the expected running time
of the algorithm on a set of n halfspaces in dimension d. We will prove by induction that
Td(n) = O(n), where the constant factor grows exponentially with the dimension. More
precisely, we will show that Td(n) ≤ γd!n, where γ is some constant that does not depend on
dimension. It will make the proof simpler if we start by proving that Td(n) ≤ γdd! n, where
γd does depend on dimension, and later we will eliminate this dependence.

Recall that our algorithm was complicated by the need to start with a solution involving d
halfspaces. It will simplify the analysis to ignore this technical detail. As we did in our worst-
case analysis, we will start with the basis cases Td(1) = 1 and T1(n) = n. Our randomized
analysis will depend on the random event of whether we execute the inexpensive step (4) or
the expensive step (5). Given n ≥ 1, let pn denote the probability that the insertion of the
nth hyperplane in the random order results in a change in the optimum vertex. Before we
derive the value of pn, let’s see how it affects our execution time.

Case 1: With probability (1− pn) there is no change in the optimum. It takes us O(d) time
to determine that this is the case (but we pay this cost irrespective of whether vn−1 ∈ hn)

Case 2: With probability pn, there is a change to the optimum. This means that we need
to apply the projection process (which we saw earlier can be done in time O(dn)) and
then invoke a (d−1)-dimensional LP involving n−1 halfspaces (which takes Td−1(n−1)
time).

In either case, we start by solving an LP involving n− 1 halfspaces, which requires Td(n− 1)
expected time. This suggests the following recurrence for the expected execution time:

Td(n) =


1 if n = 1,
n if d = 1,
Td(n− 1) + d+ pn(dn+ Td−1(n− 1)) otherwise.

The last case is the interesting one for us, since we’ll be deriving an upper bound, we can
simplify the last recursive term by replacing n− 1 with n, yielding Td(n) ≤ Td(n− 1) + d+
pn(dn+ Td−1(n)).

It remains is to determine what pn is. Assuming general position, the final optimal vertex vn
is determined by the intersection of d halfspaces. This vertex is feasible with respect to all
the other n− d halfspaces. Since the final halfspace hn was chosen randomly, the probability
that it is among the d halfspaces that determine the final optimum is d/n. Therefore,

� With probability pn = d/n, inserting hn causes the optimum to change (see Fig. 7(b))

� With probability 1− pn, inserting hn leaves the optimum unchanged (see Fig. 7(c))

Lecture 7 10 Fall 2023



CMSC 754 Dave Mount

c

(a)

vn

c

(b)

vn vn−1

c

(c)

vn = vn−1

hn

hn

Fig. 7: Backwards analysis for the randomized LP algorithm.

Returning to our analysis, setting pn = d/n and applying our induction hypothesis (that
Td(n) ≤ γd!n) we have

Td(n) ≤ Td(n− 1) + d+ pn
(
dn+ Td−1(n)

)
≤ γdd!(n− 1) + d+

d

n

(
dn+ (γd−1 (d− 1)!n)

)
= γdd!(n− 1) + (d+ d2 + γd−1d!)

= γdd!n+
[
d+ d2 + γd−1d!− γdd!

]
.

To complete the induction proof, it suffices to show that the final term in brackets is less than
zero. That is, we want to select γd such that

d+ d2 + γd−1d!− γdd! ≤ 0 or equivalently γdd! ≥ d+ d2 + γd−1d!

To satisfy this we can set γ1 = 1 and then for d = 2, 3, . . . we define

γd ←
d+ d2

d!
+ γd−1,

Recalling that d is a constant, it follows that γd is a constant, and therefore the final running
time is O(n), where the constant factor is dominated by d!.

Eliminating the Dependence on Dimension: As mentioned above, we don’t like the fact that
the “constant” γd changes with the dimension. To remedy this, note that because d! grows
so rapidly compared to either d or d2, it is easy to show that (d + d2)/d! ≤ 1/2d for almost
all sufficiently large values of d. Because the geometric series

∑∞
d=1 1/2

d, converges, it follows
that there is a constant γ (independent of dimension) such that γd ≤ γ for all d. Thus, we
have that Td(n) ≤ O(d! n), where the constant factor hidden in the big-Oh does not depend
on dimension.

Why Randomization is Okay: You might be disturbed by the fact that the algorithm is not
deterministic, and that we have only bounded the expected case running time. Might it not
be the case that the algorithm takes ridiculously long, degenerating to the O(nd) running
time, on very rare occasions? Can’t we find an equally fast deterministic algorithm?

Lecture 7 11 Fall 2023



CMSC 754 Dave Mount

The answer to both questions is “yes”. Unfortunately, the simplest deterministic algorithm
is much more complex than the randomized algorithm. Also, in his original paper, Seidel
proves that the probability that the algorithm exceeds its running time by a factor b is
O((1/c)bd!), for any fixed constant c. For example, he shows that in 2-dimensional space,
the probability that the algorithm takes more than 10 times longer than its expected time
is at most 0.0000000000065. You would have a much higher probability be being struck by
lightning twice in your lifetime!

Summary: We have presented a simple and elegant randomized incremental algorithm for solving
linear programming in spaces of constant dimension. The algorithm runs in O(n) time in
expectation. (Remember that expectation does not depend on the input, only on the random
choices.) Unfortunately, our assumption that the dimension d is a constant is crucial. The
factor d! grows so rapidly (and it seems to be an unavoidable part of the analysis) that this
algorithm is limited to fairly low dimensional spaces. In future lectures, we will see that
there are numerous geometric problems that can be efficiently solved by reduction to LP (or
something that is similar to LP).

Projecting Constraints: (Optional) Earlier in the lecture, we omitted discussion of the technical
details on how to intersect constraint the various halfspaces hj with the final hyperplane ℓn,
and project the result down to Rd−1 (recall Fig. 6). We mentioned there that this is essentially
performing one step of Gauss elimination. Here are the technical details.

Let ℓn denote the hyperplane that bounds the final halfspace. We may assume it is given by
the equation:

ℓn : an,1x1 + an,2x2 + · · ·+ an,dxd = bn.

We can express this more succinctly in matrix notation. Let An denote the 1 × d vector
consisting of the i-th row of the A matrix, An = (an,1, an,2, . . . , an,d). The inequality may be
written Anx⃗ = bn, where x⃗ is a d× 1 vector and bn is a scalar.

We want to intersect the other halfspaces with this hyperplane. Furthermore, we would like
to represent the result as a LP in d−1 dimensional problem. (Observe that after intersection
the hyperplane still resides in d space.)

The idea is to apply one step of Gauss elimination using the equation of ℓn to eliminate a
variable from all the other inequalities. By general position, we may assume that an,1 ̸= 0.
Consider an arbitrary constraint hj that we wish to intersect with ℓn:

hj : Ajx ≤ bj .

To eliminate the first dimension from hj we multiply An by (aj,1/an,1) and subtract from Aj ,
do the same for bn and bj :

A′
j = Aj −

(
aj,1
an,1

)
An

b′j = bj −
(
aj,1
an,1

)
bn.

To see that this works, consider an arbitrary point x on the hyperplane ℓn, which is equivalent
to saying that Anx = bn. Suppose as well that that x satisfies constraint hj , that is, Ajx ≤ bj .

Lecture 7 12 Fall 2023



CMSC 754 Dave Mount

Then we have

A′
jx =

(
Aj −

aj,1
an,1

An

)
x = Ajx−

aj,1
an,1

Anx

≤ bj −
aj,1
an,1

bn = b′j .

Thus, every point that satisfies the original constraint also satisfies the modified constraint.
The converse holds by a symmetrical argument. A similar elimination can be performed to
the objective vector c⃗. Since the first term of each equation vanishes (is now zero), we are
left with a d − 1 dimensional problem. Reversing the process allows us to project the d − 1
dimensional solution back into d-space.

Lecture 7 13 Fall 2023


