
CMSC 754 Dave Mount

CMSC 754: Lecture 9
Planar Point Location (using Trapezoidal Maps)

Reading: Chapter 6 of the 4M’s.

Point Location: In planar point location we are given a polygonal subdivision of the plane, and
the objective is to preprocess this subdivision into a data structure so that given a query
point q, it is possible to efficiently determine which face of the subdivision contains q (see
Fig. 1(a)). For example, the subdivision might represent government subdivisions, such as
countries, states, or counties, and we wish to identify the country, state, or county of a point
given its GPS coordinates.

(a) (b)

q

q

si

Fig. 1: (a) point location and (b) vertical ray-shooting queries.

It will be useful to generalize the above problem. Rather than assuming that the input is
a subdivision of space into cells (what is commonly referred to as a cell complex ), we will
assume that the input is merely a set of n line segments S = {s1, . . . , sn}. The objective is to
answer vertical ray-shooting queries, which means, given a query point q, what line segment
si (if any) lies immediately below the query point (see Fig. 1(b)). Observe that the ability
to answer vertical ray-shooting queries implies that point-location queries can be answered.
We simply label each segment with the identity of the subdivision cell that lies immediately
above it.

We will make the usual general-position assumptions. In particular, except when two segments
share a common endpoint, no two segment endpoints share the same x-coordinate. Also, we
will assume no vertical segments. Let us also assume that the query point does not have the
same x-coordinate of any segment endpoint.

Our objective is to obtain a data structure with O(n) space and O(log n) query time, which
we can build in O(n log n) time. This is asymptotically optimal (assuming a data structure
based on comparisons).

History: When the problem was first considered, a number of solutions had been proposed, but
they were all suboptimal by a log factor either in the query time or the space. The first optimal
solution was proposed by David Kirkpatrick in the early 1980’s. The algorithm involved a very
clever incremental approach based on iteratively decimating a triangulation. The approach
described here is both simpler and more efficient, but many of the ideas were inspired by
Kirkpatrick’s data structure. The method we will described is based on the randomized

Lecture 9 1 Fall 2023



CMSC 754 Dave Mount

construction of trapezoidal maps, and so the construction time holds in the expected case.
(In contrast, Kirkpatrick’s solution was deterministic.)

Recap of Trapezoidal Maps: Our point-location data structure will be based on the randomized
trapezoidal map construction from the previous lecture. In that lecture we showed that a
trapezoidal map of O(n) space could be constructed in (randomized) O(n log n) expected
time. In this lecture we show how to modify the construction so that, as a by product, we
obtain a data structure for answering vertical ray-shooting queries. The preprocessing time
for the data structure will also be O(n log n) in the expected case, the space required for the
data structure will be O(n), and the query time will be O(log n). The latter two bounds will
hold unconditionally.

Let us recap some of the concepts from the previous lecture. Recall that the input as a set of
segments in the plane S = {s1, . . . , sn}, which are assumed to have been randomly permuted,
and which are enclosed in an axis-aligned bounding rectangle. Recall that the trapezoidal
map, denoted T (S), is a subdivision generated by shooting bullet paths both upwards and
downwards from each segment endpoint until first striking another segment (or hitting the
bounding box of the input). Let Si = {s1, . . . , si} , and let Ti = T (Si) denote the trapezoidal
map of Si, and T = Tn.
Recall from the previous lecture that each time we add a new line segment, it may result in
the creation of the collection of new trapezoids, which are said to depend on this line segment.
We showed that (under the assumption of the random insertion order) the expected number
of new trapezoids that are created with each stage is O(1). This fact will be used later in this
lecture.

Point Location Data Structure: Typical search structures (red-black trees, AVL trees, etc.)
are rooted binary trees. Our point location data structure will be a rooted binary tree with
shared subtrees, or equivalently, a rooted directed acyclic graph (DAG). Each node will have
either zero or two outgoing edges. Nodes with zero outgoing edges are called leaves. The
leaves will be in 1–1 correspondence with the trapezoids of the map. The other nodes are
called internal nodes, and they are used to guide the search to the leaves. (Note that subtree
sharing is important for our space efficiency.)

There are two types of internal nodes, x-nodes and y-nodes:

x-Nodes: Each x-node contains a reference to an endpoint of some segment. Its two children
correspond to the points lying to the left and to the right of the vertical line passing
through p (see Fig. 2(a)).

y-Nodes: Each y-node contains a reference to a line segment of the subdivision, and the
left and right children correspond to whether the query point is above or below the line
containing this segment, respectively (see Fig. 2(b)). (Don’t be fooled by the name—y-
node comparisons depend on both the x and y values of the query point.)

Note that the search will reach a y-node only if we have already verified that the x-coordinate
of the query point lies within the vertical slab that contains this segment.

Our construction of the point location data structure mirrors the incremental construction
of the trapezoidal map, as given in the previous lecture. In particular, if we freeze the

Lecture 9 2 Fall 2023



CMSC 754 Dave Mount

sp

A B

(a) (b)

A B

p A

B

s

(b)

A B

x-node y-node

Fig. 2: (a) x-node and (b) y-node.

construction just after the insertion of any segment, the current structure will be a point
location structure for the current trapezoidal map.

In Fig. 3 below we show a simple example of what the data structure looks like for two line
segments. For example, if the query point is in trapezoid D, we would first detect that it is
to the right of endpoint p1 (right child), then left of t1 (left child), then below s1 (right child),
then right of p2 (right child), then above s2 (left child).

p1

t1

p2 t2

s1

s2

A

B

C F

D
E

G

s2

p2

A

B

C

D F

s1

E

s2 G

t1

p1

t2
B

(a) (b)

q

q

Fig. 3: Trapezoidal map point location data structure.

Incremental Construction: The question is how do we build this data structure incrementally?
First observe that when a new line segment is added, we only need to adjust the portion of
the tree that involves the trapezoids that have been deleted as a result of this new addition.
Each trapezoid that is deleted will be replaced with a search structure that determines the
newly created trapezoid that contains it.

Suppose that we add a line segment s. This results in the replacement of an existing set
of trapezoids with a set of new trapezoids. As a consequence, we will replace the leaves
associated with each such deleted trapezoid with a local search structure, which locates the
new trapezoid that contains the query point. There are three cases that arise, depending on
how many endpoints of the segment lie within the current trapezoid.

Single (left or right) endpoint: A single trapezoid A is replaced by three trapezoids, de-
noted B, C, and D. Letting p denote the endpoint, we create an x-node for p, and
one child is a leaf node for the trapezoid B that lies outside vertical projection of the
segment. For the other child, we create a y-node whose children are the trapezoids C
and D lying above and below the segment, respectively (see Fig. 4(a)).

Lecture 9 3 Fall 2023



CMSC 754 Dave Mount

Two segment endpoints: This happens when the segment lies entirely inside an existing
trapezoid A, which is replaced by four trapezoids, E, B, C, and D. Letting p and t
denote the left and right endpoints of the segment, we create two x-nodes, one for p and
the other for t. We create a y-node for the line segment, and join everything together
(see Fig. 4(b)).

No segment endpoints: This happens when the segment cuts completely through a trape-
zoid A. This trapezoid is replaced by two trapezoids, one above and one below the
segment, denoted C and D. We replace the leaf node for the original trapezoid with a
y-node whose children are leaf nodes associated with C and D (see Fig. 4(c)).

A
s

p

(a)

sA

p
sB

p

C

D

B

C D

A

s

p

(b)

s
A

p

E

C D

t

B

t
D

C
E

B

A s

(c)

A

B C

B

C
s

Fig. 4: Line segment insertion and updates to the point location structure. The single-endpoint
case (left) and the two-endpoint case (right). The no-endpoint case is not shown.

It is important to notice that (through sharing) each trapezoid appears exactly once as a
leaf in the resulting structure. How does this sharing occur? Whenever we add a segment,
the wall trimming that results can result in two distinct trapezoids being merged into one
(see trapezoid C in Fig. 5(a) and B and C in Fig. 5(b)). When this happens, the various
paths leading into merged trapezoid are joined to a common node. An example showing the
complete transformation to the data structure after adding a single segment is shown in Fig. 5
below.

Analysis: We claim that the size of the point location data structure is O(n) and the query time
is O(log n), both in the expected case. As usual, the expectation depends only on the order
of insertion, not on the line segments or the location of the query point.

To prove the space bound of O(n), observe that the number of new nodes added to the
structure with each new segment is proportional to the number of newly created trapezoids.
Last time we showed that with each new insertion, the expected number of trapezoids that
were created was O(1). Therefore, we add O(1) new nodes with each insertion in the expected
case, implying that the total size of the data structure is O(n).

Analyzing the query time is a little subtler. In a normal probabilistic analysis of data struc-
tures we think of the data structure as being fixed, and then compute expectations over
random queries. Here the approach will be to imagine that we have exactly one query point

Lecture 9 4 Fall 2023



CMSC 754 Dave Mount

M

p1

t1

p2 t2

s1

s2

A

B

C F

D
E

G

s2

p2

A

B

C

D F

s1

E

s2 G

t1

p1

t2
B

p1

t1

p2 t2

s1

s2

A

B

H

F

I

J

N s2

p2

A

B

F

s1

s2

t1

p1

t2
B

s3

p3

J

H

I

s3

s3

K L

s3 N

p3

t3
s3

K

L
M

t3

Fig. 5: Line segment insertion.

to handle. The query point can be chosen arbitrarily (imagine an adversary that tries to se-
lect the worst-possible query point) but this choice is made without knowledge of the random
choices the algorithm makes. We will show that, given a fixed query point q, the expected
search path length for q is O(log n), where the expectation is over all segment insertion orders.
(Note that this does not imply that the expected maximum depth of the tree is O(log n). We
will discuss this issue later.)

Let q denote the query point. Rather than consider the search path for q in the final search
structure, we will consider how q moves incrementally through the structure with the addition
of each new line segment. Let ∆i denote the trapezoid of the map that q lies in after the
insertion of the first i segments. Observe that if ∆i−1 = ∆i, then insertion of the ith segment
did not affect the trapezoid that q was in, and therefore q will stay where it is relative to the
current search structure. (For example, if q was in trapezoid B prior to adding s3 in Fig. 5
above, then the addition of s3 does not incur any additional cost to locating q.)

However, if ∆i−1 ̸= ∆i, then the insertion of the ith segment caused q’s trapezoid to be
replaced by a different one. As a result, q must now perform some additional comparisons to
locate itself with respect to the newly created trapezoids that overlap ∆i−1. Since there are a
constant number of such trapezoids (at most four), there will be O(1) work needed to locate
q with respect to these. In particular, q may descend at most three levels in the search tree
after the insertion. The worst case occurs in the two-endpoint case, where the query point
falls into one of the trapezoids lying above or below the segment (see Fig. 4(b)).

Since a point can descend at most three levels with each change of its containing trapezoid,
the expected length of the search path to q is at most three times the number of times that q

Lecture 9 5 Fall 2023



CMSC 754 Dave Mount

changes its trapezoid as a result of each insertion. For 1 ≤ i ≤ n, let Xi(q) = 1 if q changes its
trapezoid after the ith insertion 0 otherwise. Let E(Xi(q)) denote its expected value, which
is equivalent to Prob(∆i(q) ̸= ∆i−1(q)). Letting D(q) denote the average depth of q in the
final search tree, we have

D(q) ≤ 3
n∑

i=1

E(Xi(q)) = 3
n∑

i=1

Prob(∆i(q) ̸= ∆i−1(q)).

What saves us is the observation that, as i becomes larger, the more trapezoids we have,
and the smaller the probability that any random segment will affect a given trapezoid. In
particular, we will show that Prob(Xi(q)) ≤ 4/i. We do this through a backwards analysis.
Consider the trapezoid ∆i that contained q after the ith insertion. Recall from the previous
lecture that each trapezoid is dependent on at most four segments, which define the top and
bottom edges, and the left and right sides of the trapezoid. Clearly, ∆i would have changed
as a result of insertion i if any of these four segments had been inserted last. Since, by the
random insertion order, each segment is equally likely to be the last segment to have been
added, the probability that one of ∆i’s dependent segments was the last to be inserted is at
most 4/i. Therefore, Prob(Xi(q)) ≤ 4/i.

From this, it follows that the expected path length for the query point q is at most

D(q) ≤ 3

n∑
i=1

4

i
= 12

n∑
i=1

1

i
.

Recall that
∑n

i=1
1
i is the Harmonic series, and for large n, its value is very nearly lnn. Thus

we have
D(q) ≈ 12 · lnn = O(log n).

Guarantees on Search Time: (Optional) One shortcoming with this analysis is that even
though the search time is provably small in the expected case for a given query point, it
might still be the case that once the data structure has been constructed there is a single very
long path in the search structure, and the user repeatedly performs queries along this path.
Hence, the analysis provides no guarantees on the running time of all queries.

It is far from trivial, but it can be shown that by repeated application of the randomized
incremental construction, it is possible to achieve worst-case search time of O(log n), worst-
case size of O(n), and expected-case construction time is O(n log n).1 The idea is to engineer
the constants so that the probability of failure along any search path is extremely small (say
1/nc, for some constant c ≥ 1). It follows that all the possible search paths will have the
desired O(log n) depth with at least a constant probability. While we might be unlucky on
any given execution of the algorithm, after a constant number of attempts, we expect one of
them to succeed.

Line Segment Intersection Revisited: (Optional) Earlier this semester we presented a plane-
sweep algorithm for computing line segment intersection. Recall that that algorithm had a

1M. Hemmer, M. Kleinbort, and D. Halperin. Optimal randomized incremental construction for guaranteed
logarithmic planar point location. Comput. Geom., 58:110–123, 2016.

Lecture 9 6 Fall 2023



CMSC 754 Dave Mount

running time of O((n+I) log n), where I is the number of intersection points. It is interesting
to note that the randomized approach used for trapezoidal maps can be adapted to deal with
intersecting segments as well. In addition to shooting bullet paths from each vertex, we also
shoot them up and down from each intersection point (see Fig. 6).

Fig. 6: Trapezoidal map for intersecting line segments.

The algorithm is a simple extension to the randomized incremental algorithm for the case
where segments do not intersect. Whenever a segment is added, observe that in addition to
it stabbing vertical segments, it may generally cross over one of the existing segments. When
this occurs, the algorithm must determine the trapezoid that is hit on the other side of the
segment, and then continue the process of walking the segment.

With a bit of additional work, it can be shown that the adaptation of the randomized algo-
rithm to general (intersecting) segments runs in O(I + n log n) time, thus removing the log
factor from the I term. Why is this faster (in expectation) than the plane-sweep algorithm?
Intuitively, the reason is that the O(log n) factor in the randomized algorithm comes from the
point location queries, which are applied only to the left endpoint of each of the n segments.

Lecture 9 7 Fall 2023


