
CMSC 754 Dave Mount

CMSC 754: Lecture 12
Delaunay Triangulations: Incremental Construction

Reading: Chapter 9 in the 4M’s. This algorithm was presented in L. J. Guibas, D. E. Knuth, and
M. Sharir, Randomized incremental construction of Delaunay and Voronoi diagrams, Algorithmica,
7, 1992, 381–413.

Constructing the Delaunay Triangulation: We will present a simple randomized incremental
algorithm for constructing the Delaunay triangulation of a set of n sites in the plane. Its
expected running time is O(n log n) (which holds in the worst-case over all point sets, but
in expectation over all random insertion orders). This simple algorithm had been known for
many years as a practical solution, but it was dismissed by theoreticians as being inefficient
because its worst case running time is O(n2). When the randomized analysis was discovered,
the algorithm was viewed much more positively (albeit with the proviso to randomized the
input order).

The algorithm is remarkably similar in spirit to the randomized algorithm for trapezoidal map
algorithm in that it not only builds the triangulation, but it also provides a point-location
data structure for the final triangulation as well. (Rather then building a point-location data
structure, we will adopt an alternative method based on bucketing future sites.)

The input consists of a set P = {p1, . . . , pn} of point sites in R2. As with any randomized
incremental algorithm, the idea is to insert sites in random order, one at a time, and update
the triangulation with each new addition. The issues involved with the analysis will be
showing that, after each insertion, the expected number of structural changes in the diagram
is O(1).

As with the incremental algorithm for trapezoidal maps, we need some way of keeping track of
where newly inserted sites are to be placed in the diagram. We will store each of the uninserted
sites in a bucket according to the triangle in the current triangulation that contains it. We
will show that the expected number of times that a site is rebucketed throughout the course
of the algorithm is O(log n), which when summed over all the sites leads to a total time of
O(n log n).

Incremental update: It will be convenient to assume that each newly added site lies within some
triangle of the triangulation. This will not be true when sites are added that lie outside the
convex hull of the current point set. To satisfy this, we well start by adding three bogus
sentinel sites that will form an infinitely large triangle that contains all the sites. After
the final triangulation is completed, we will remove these sentinel sites and their incident
triangles. (In our trapezoidal map algorithm, this is analogous to putting all the segments in
an enclosing rectangle.)1 We won’t show this triangle in our figures, but imagine that it is
there nonetheless.

We permute the sites in random order and insert one by one. When a new site p is added,
we find the triangle △abc of the current triangulation that contains this site (we will see how

1Some care must be taken in the construction of this enclosing triangle. It is not sufficient that it simply contains
all the sites. It should be so large that the vertices of the triangle do not lie in the circumcircles of any of the triangles
of the final triangulation. Our book suggests a symbolic alternative, which is more reliable.

Lecture 12 1 Fall 2023



CMSC 754 Dave Mount

later), insert the site into this triangle, and join the site to the three surrounding vertices (see
Fig. 1(a)). This creates three new triangles incident to p, △pab, △pbc, and △pca. For each
triangle (say, △pab), we check whether vertex of the triangle that lies on the opposite side of
the edge ab lies within the circumcircle of △pab. This is called a local Delaunay condition.
(If there is no such vertex, because this edge is on the convex hull, then we are done.) If this
vertex, call it d, fails the local Delaunay condition, we swap the edge ab out and replace it
with pd. We repeat the same test process recursively with these triangles (see Fig. 1(b)).

(a) (b)

pp p p

b

a
c

b

a
c c c

b

a

b

a

d d

Fig. 1: Delaunay site insertion.

Local vs. Global Delaunay: An obvious issue with the above process is that we do not test
all the sites for violation of the circumcircle condition, just for adjacent triangles. Why this
works is related to an important issue in Delaunay triangulations. We know from the empty
circumcircle condition that in a Delaunay triangulation, the circumcircle of every triangle is
empty of other sites. This suggests two different criteria for testing whether a triangulation
is Delaunay:

Global Delaunay: The circumcircle of each triangle△abc contains no other site d. (Fig. 2(a)
shows a violation.)

Local Delaunay: For each pair of neighboring triangles △abc and △acd, d lies outside the
circumcircle of △abc. (Fig. 2(b) shows a violation.)

a

b
e

d

c

a

b
e

d

c

a

bc

!

a

bc
d

!
d

(a) (b) (c) (d)

!

Fig. 2: Global- and local-Delaunay conditions.

Clearly, if a triangulation is globally Delaunay it is locally Delaunay. Our incremental algo-
rithm only checks the local-Delaunay condition, however. Could it be that a triangulation
might satisfy the condition locally, but fail to satisfy it globally (see Fig. 2(c))? Delaunay
proved, however, that the two conditions are in fact equivalent:

Delaunay’s Theorem: A triangulation is globally Delaunay iff it is locally Delaunay.

Proof: (Sketch) The global to local implication is trivial, so it suffices to prove that local
implies global. Consider any triangle △abc of a locally Delaunay triangulation, and let

Lecture 12 2 Fall 2023



CMSC 754 Dave Mount

d be the remaining vertex of neighboring triangle that lies on the opposite side of edge
bc. We assert that if d lies outside the circumcircle of △abc, then no other site can lie
within this circumcircle.

A formal justification will take too much work, so we’ll just consider a limited sce-
nario, which illustrates the key idea. Suppose that d is outside the circumcircle of △abc
(the blue circle Fig. 2(d)) but (to the contrary) the vertex e opposite the edge cd lies
within this circumcircle (see Fig. 2(d)). Consider the circumcircle of △cde (the red circle
Fig. 2(d)). By an elementary (but somewhat tedious) analysis of the configuration of
these sites, it follows that b lies within this circumcircle. Since b is in the neighboring
triangle to △cde, this implies that the triangulation is not locally Delaunay, which yields
the contradiction.

Because the algorithm checks that all the newly created triangles are locally Delaunay, the
algorithm’s correctness follows as a direct consequence.

Incircle Test: Before presenting the algorithm, we shall introduce the geometric primitives in-
volved in testing whether triangles satisfy the Delaunay condition. Recall that a triangle
△abc is in the Delaunay triangulation, if and only if the circumcircle of this triangle contains
no other site in its interior. (Recall that we make the general position assumption that no
four sites are cocircular.)

How do we test whether a site d lies within the interior of the circumcircle of △abc? Let’s
assume that the vertices of the triangle △abc are given in counterclockwise order. We claim
that d lies in the circumcircle determined by the △abc if and only if the following determinant
is positive (see Fig. 3(a)).

inCircle(a, b, c, d) ≡ det


ax ay a2x + a2y 1

bx by b2x + b2y 1

cx cy c2x + c2y 1

dx dy d2x + d2y 1

 > 0.

a

d

b

c
inCircle(a, b, c, d) :

< 0

= 0
> 0

d
d

d
a b
c

Ψ

d d

(a) (b)

Fig. 3: Incsircle test.

This is called the incircle test in R2. (The incircle test can be generalized to any dimension.)
It is notable that the incircle test in R2 can be viewed as an orientation test in 3-D, where we
have effectively lifted the sites onto a paraboloid Ψ in R3 by creating an addition z-coordinate

Lecture 12 3 Fall 2023



CMSC 754 Dave Mount

whose value is x2+y2. (As d moves from within the circle to outside, the lifted point d↑ moves
from below to above the hyperplane through the lifted points a↑, b↑, and c↑ (see Fig. 3(b)).

It is also noteworthy that, while we have defined the incircle test as testing d with respect to
△abc, the basic laws of determinants imply that (subject to a possible sign change) this can
be used to test any of the four sites with respect to the triangle defined by the other three.

Deriving the Incircle Test (Optional): We will not prove the correctness of this test, but we
will show a somewhat simpler assertion, namely that if the four points are cocircular then the
above determinant is equal to zero. (It follows from continuity that as d moves from inside
the circle to the outside, the sign of the determinant changes as well.)

Suppose that a, b, c, and d are all cocircular then there exists a center point q = (qx, qy) and
a radius r such that

(ax − qx)
2 + (ay − qy)

2 = r2,

and similarly for the other three points. (We won’t compute q and r, but merely assume their
existence for now.) Expanding this and collecting common terms we have

0 = (a2x + a2y)− 2qxax − 2qyay + (q2x + q2y − r2)

= (−2qx)ax + (−2qy)ay + 1 · (a2x + a2y) + (q2x + q2y − r2) · 1.

If we do the same for the other three points, b, c, and d, and express this in the form of a
matrix, we have 

ax ay a2x + a2y 1

bx by b2x + b2y 1

cx cy c2x + c2y 1

dx dy d2x + d2y 1




−2qx
−2qy
1

q2x + q2y − r2

 = 0.

In other words, there exists a linear combination of the columns of the 4 × 4 matrix that is
equal to the zero vector. We know from linear algebra that this is true if and only if the
determinant of the matrix is zero.

Randomized Incremental Construction: We can now present the complete algorithm. Given
the set P = {p1, . . . , pn} of sites, we first compute the sentinel triangle containing them all.
We then permute the sites randomly and insert them into the triangulation one by one.

The algorithm for the incremental algorithm is shown in the code block below, and an ex-
ample is presented in Fig. 4. The current triangulation is kept in a global data structure,
implemented as a doubly-connected edge list (DCEL). All of the basic operations described
below (finding edges and vertices and flipping edges) can be done in O(1) time.

As you can see, the algorithm is very simple. There are only two elements that have not been
shown are the implementation. The first is the update operations on the data structure for the
simplicial complex. These can be done in O(1) time each on any reasonable representation (a
DCEL, for example). The other issue is locating the triangle that contains p. We will discuss
this below.

Running-Time Analysis: To analyze the expected running time of algorithm we will establish
two bounds, each averaged over all possible insertion orders. With the addition of each site:

Lecture 12 4 Fall 2023



CMSC 754 Dave Mount

Incremental Delaunay Triangulation Algorithm
Insert(p) {

Find the triangle △abc containing p
Insert edges pa, pb, and pc into triangulation
SwapTest(ab) // check/fix the surrounding edges
SwapTest(bc)
SwapTest(ca)

}

SwapTest(ab) {
if (ab is an edge on the exterior face) return
Let d be the vertex to the right of edge ab
if (inCircle(p, a, b, d)) { // d violates the incircle test

Flip edge ab // replace ab with pd
SwaptTest(ad) // check/fix the new suspect edges
SwaptTest(db)

}
}

p a
b

c

△pab: fails!

p a
b

c

flip ab

d

p a
b

c

d

e

△pde: OK

△peb: OK

△pbc: OK

flip ca

△pcf : OK

p a
b

c

d

e

f

△pfa: OK

Done!

Connect p

p a
b

c

p a
b

c

d

△pad: OK
△pdb: fails!

flip db

d

p a
b

c

d

e
△pca: fails!

f

Fig. 4: Incremental site insertion.

Lecture 12 5 Fall 2023



CMSC 754 Dave Mount

(1) O(1) structural changes are made to the triangulation (in expectation), and

(2) O(log n) time is spent determining which triangle contains each newly inserted site (in
expectation).

These bounds depend only on the insertion order, not the distribution of the sites.

Bounding the Structural Changes: We argue first that the expected number of edge changes
with each insertion is O(1) by a simple application of backwards analysis. First observe that
(assuming general position) the structure of the Delaunay triangulation is independent of the
insertion order of the sites so far. Thus, any of the existing sites is equally likely to have been
the last site to be added to the structure.

Suppose that some site p was the last to have been added. How much work was needed to
insert p? Observe that the initial insertion of p involved the creation of three new edges, all
incident to p. Also, whenever an edge swap is performed, a new edge is added to p. These
are the only changes that the insertion algorithm can make. Therefore the total number of
changes made in the triangulation for the insertion of p is proportional to the degree of p after
the insertion is complete (see Fig. 5). Although any one vertex may have a very high degree,
we will exploit the fact that in a planar graph, the average vertex degree is just a constant.

p

insert p

Fig. 5: Number of structural changes is equal to p’s degree after insertion (three initial edges and
three edge flips).

To perform the backwards analysis, we consider the situation after the insertion of the ith
site. Let di be a random variable that indicates the degree of the newly inserted site in our
randomized algorithm. Let Pi = {p1, . . . , pi} denote the first i sites to be inserted. Although
the diagram depends on which particular i sites are in this subset, our analysis will not. For
1 ≤ j ≤ i, let deg(pj) denote the degree of site pj in triangulation DT (Pi) just after the ith
insertion.

Because the diagram does not depend on the insertion order, each of the sites of Pi has an
equal probability of 1

i of being the last site to be inserted. Recall that (by Euler’s formula),
the triangulation has at most 3i edges. It is easy to see that the sum of vertex degrees is
equal to twice the total number of edges (since each edge is counted twice), that is, 6i. We
conclude that expected value of di, denoted E[di], satisfies:

E[di] =
1

i

i∑
j=1

deg(pi) ≤ 6i

i
= 6.

Therefore, by the magic of backwards analysis, the expected number of structural changes
following the insertion of the ith site is, in expectation, just 6.

Lecture 12 6 Fall 2023



CMSC 754 Dave Mount

Bounding the Location Cost: The second aspect of the expected-case running time is the cost
of determining which triangle contains each newly created site. As mentioned earlier, we
will employ a bucketing approach, as we did with the trapezoidal-map algorithm. Think of
each triangle of the current triangulation as a bucket that holds the sites that lie within this
triangle and have yet to be inserted (see Fig. 6(a)). When a new site p is inserted, a number of
old triangles are deleted (shaded red in Fig. 6(a)) and a number of new triangles are created
(shaded blue in Fig. 6(b)). All the sites in the buckets of the old triangles need to be moved
into the associated new triangle. This process is called rebucketing.

insert p

pp q

a

bc

∆

(a) (b) (c)

Fig. 6: Rebucketing sites after inserting site p.

For the sake of simplifying the analysis, let us assume that the cost of rebucketing a single site
during a single insertion is O(1). (The issue is that the cost of rebucketing depends on the
degree of the newly inserted site. In the previous section we showed that the average degree
is a constant, so this assumption is not unreasonable.) We will show through a backwards
analysis that, in expectation, any fixed site is rebucketed O(log n) times.

Let us fix a site q ∈ P . Consider the situation just after the insertion of the ith site. We
may assume that q has not yet been inserted, since otherwise its rebucketing cost is zero
after the ith insertion. For 1 ≤ i ≤ n, let Xi(q) denote the random event that q is moved
to a new triangle after the ith insertion, and let Prob(Xi(q)) denote the probability of this
event. Letting B(q) denote the average number of times that q is rebucketed throughout the
algorithm, we have

B(q) ≤
n∑

i=1

Prob(Xi(q)).

To bound Prob(Xi(q)), let ∆ be the triangle containing q after the ith insertion. As observed
above, after we insert the ith site, all the newly created triangles are incident to this new
site. Thus, ∆ would have come into existence as a result of the last insertion if and only if
one of its three incident vertices happened to be the last to be inserted (see Fig. 6(c)). Since
∆ is incident to exactly three sites, and every site is equally likely to be the last inserted, it
follows that the probability that ∆ came into existence is 3

i . (We are cheating a bit here by
ignoring the three initial sites at infinity.) Therefore, Prob(Xi(q)) ≤ 3

i .

From this, it follows that the expected number of times that the site q is rebucketed is

B(q) ≤
n∑

i=1

3

i
= 3

n∑
i=1

1

i
.

Lecture 12 7 Fall 2023



CMSC 754 Dave Mount

Recall that
∑n

i=1
1
i is the Harmonic series, and for large n, its value is very nearly lnn. Thus

we have
B(q) ≤ 3 · lnn = O(log n).

Although the diagram depends on the order in which the sites have been added, this bound
does not. Summing over all the n sites, it follows that the total time spent rebucketing all
the sites is

∑n
i=1B(pi) = O(n log n).

Point Location Data Structure: The above analysis is reminiscent of the analysis we performed
for point-location for the incremental algorithm for trapezoidal maps. Just as we did there,
rather than just rebucketing points, we could build a directed acyclic graph (DAG) recording
the history of rebucketing operations on a triangle-by-triangle basis. The result is a data
structure that can answer point-location queries. The query time is the same as that of the
trapezoidal map (modulo constant factors).

Lecture 12 8 Fall 2023


