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CMSC 754: Lecture 14
Orthogonal Range Searching and kd-Trees

Reading: Chapter 5 in the 4M’s.

Range Searching: In this lecture we will discuss a new data structure problem,, called range
searching. We are given a set of n points P = {p1, . . . , pn} ⊂ Rd and a class of range shapes
(e.g., rectangles, balls, triangles, halfplanes). The points of P are to be preprocessed and
stored in a data structure (whose structure may be based on the knowledge of the allowable
range shapes). Given a query range Q from this class, the objective is identify the points of
P that lie within Q. The term “identify” can mean a number of things:

Emptiness: If P ∩Q = ∅, return “empty” else “non-empty”

Counting: Return the count |P ∩Q| of the number of points of P within Q

Weighted counting: Each point pi ∈ P has an associated weight w(pi), and we are to
return the weighted sum of points in Q,

∑
p∈Qw(pi).

Semigroup weighted counting: Why limit to addition? For example, how about comput-
ing the product of weights or the maximum of the weights?

Generally, weighted counting makes sense as long as you have an operator that is both
commutative and associative. Your data structure may also take advantage of special
properties of your operator. For example, if the operator has an inverse, you have
the flexibility both add and subtract weights. If your operator is idempotent (that is,
a⊕ a = a) then there is no harm in counting the same item multiple times.

Reporting: Return a list containing all the points of P ∩Q.

Top-k: Report the (up to) k points of P ∩Q based on weight.

Complexity Bounds: Observe that all of the above queries can be answered inO(n) time trivially,
by just running through all the points and testing one-by-one whether they lie within Q. You
want to think of n as being huge (e.g., millions or more), but you want a query time that is
much smaller (say tens to hundreds). Data structures for range searching are usually analyzed
in terms of two quantities, space and query time. Ideally, one would like to achieve O(n) space
and O(log n) query time, since this matches the best you can expect in 1-dimensional space.
If you cannot achieve this “gold standard,” you might hope to do well with one criteria or the
other. For example, the query time might be O(log n), but the space is O(n2). Alternatively,
the space might be O(n), but the query time is O(

√
n). (Remember that from the perspective

of asymptotics, logarithmic query times are always better than polynomial times, thus logc n
is better than nb for positive numbers c and b, not matter how large c or how small b.)

Ideally, the query time does not depend on the number of points that lie within the query
range. It doesn’t matter whether your range contains no point or all the points, the (worst-
case) running time depends only on n. The exception is reporting queries, since you need to
take time to place the elements in the list. For example, the query time for range reporting
might be expressed as O(k + log n), where k = |P ∩Q| and n = |P |.
Another issue is the amount of time that it takes to construct the data structure. Ideally,
the construction time should be about the same as the space, perhaps larger by a factor of
O(log n).
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Orthogonal Range Queries: In this lecture we will focus on perhaps the most common range
search, called an orthogonal range searching. In this case a range is defined by axis-parallel
rectangles in R2 and d-dimensional hyperrectangles in Rd. An important property of or-
thogonal ranges is that they can be expressed as the product of 1-dimensional ranges. Let’s
assume that a point p ∈ Rd is expressed as its coordinate vector (p1, . . . , pd). Given two points
a, b ∈ Rd, where ai < bi for 1 ≤ i ≤ d, they define an axis-parallel rectangle (see Fig. 1(a))

R(a, b) = {p ∈ Rd : ai ≤ pi ≤ bi} = [a1, b1]× · · · × [ad, bd]

Given any set of points P = {p1, . . . , pn} ∈ Rd (see Fig. 1(b)), the objective is to preprocess
these points into a data structure so that, given any query range R = R(a, b), we can quickly
count (or report) the points of P ∩R.
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Fig. 1: Orthogonal range query.

Canonical Subsets: A common approach used in solving almost all range queries is to represent
P as a collection of canonical subsets {P1, . . . , Pk}, each Pi ⊆ P (where k is generally a
function of n and the type of ranges), such that any set can be formed as the disjoint union
of canonical subsets. Note that these subsets may generally overlap each other.

There are many ways to select canonical subsets, and the choice affects the space and time
complexities. For example, the canonical subsets might be chosen to consist of n singleton
sets, each of the form {pi}. This would be very space efficient, since we need only O(n) total
space to store all the canonical subsets, but in order to answer a query involving k objects
we would need k sets. (This might not be bad for reporting queries, but it would be too
long for counting queries.) At the other extreme, we might let the canonical subsets be all
the sets of the range space R. Thus, any query could be answered with a single canonical
subset (assuming we could determine which one), but we would have |R| different canonical
subsets to store, which is typically a higher ordered polynomial in n, and may be too high to
be of practical value. The goal of a good range data structure is to strike a balance between
the total number of canonical subsets (space) and the number of canonical subsets needed to
answer a query (time).

Perhaps the most common way in which to define canonical subsets is through the use of a
partition tree. A partition tree is a rooted (typically binary) tree, whose leaves correspond
to the points of P . Each node u of such a tree is naturally associated with a subset of P ,
namely, the points stored in the leaves of the subtree rooted at u (see Fig. 2(a)). Canonical
subsets are for conceptual purposes, and need not be stored in the data structure.
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Fig. 2: (a) Canonical subsets for interval queries and (b) internal nodes labeled with the largest key
of its left subtree and answering the range query [xlo , xhi ] = [2, 23]. (Canonical subsets are usually
not stored explicitly.)

One-dimensional range queries: Before we consider how to solve general range queries, let us
consider how to answer 1-dimension range queries, or interval queries. Let us assume that we
are given a set of points P = {p1, p2, . . . , pn} on the line, which we will preprocess into a data
structure. Then, given an interval [xlo , xhi ], the goal is to count or report all the points lying
within the interval. Ideally, we would like to answer counting queries in O(log n) time, and
we would like to answer reporting queries in time O((log n) + k) time, where k is the number
of points reported.

Let us consider a different approach, which will generalize to higher dimensions. We sort
the points of P in increasing order and store them in the leaves of a balanced binary search
tree1 (see Fig. 2(a)). There are n − 1 internal nodes in the tree, and each internal node is
labeled with the largest key appearing in its left child. Each internal node is associated with
its canonical subset, that is, the subset of points stored in the leaves of the subtree rooted at
this node.

Note that the canonical subsets are usually not stored explicitly with each node of the tree. If
we want to answer range counting queries, we can simply store the count (or weighted count)
of the canonical subset in each node. If we want to answer range reporting queries, we can
simply traverse the tree to obtain the canonical subset.

Answering range queries: Observe that the canonical subsets corresponding to any range can
be identified in O(log n) time from this structure. Given any interval [xlo , xhi ], we search the
tree to find the rightmost leaf u whose key is less than xlo and the leftmost leaf v whose key
is greater than xhi . (To make this possible for all ranges, we could add two sentinel points
with values of −∞ and +∞ to form the leftmost and rightmost leaves.) Clearly all the leaves
between u and v constitute the points that lie within the range. To form these canonical
subsets, we take the subsets of all the maximal subtrees lying between the paths from the
root u and v.

Here is how to compute these subtrees. The search paths to u and v may generally share

1For the 1-dimensional case, a tree is not really needed. We could store the points in an array and perform binary
search. Unfortunately, this will not generalize to higher dimensions.
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some common subpath, starting at the root of the tree. Once the paths diverge, as we follow
the left path to u, whenever the path goes to the left child of some node, we add the canonical
subset associated with its right child. Similarly, as we follow the right path to v, whenever
the path goes to the right child, we add the canonical subset associated with its left child.

As mentioned earlier, to answer a range reporting query we simply traverse the canonical
subtrees, reporting the points of their leaves. To answer a range counting query we return
the sum of weights associated with the nodes of the canonical subtrees.

Since the search paths to u and v are each of length O(log n), it follows that O(log n) canonical
subsets suffice to represent the answer to any query. Thus range counting queries can be
answered in O(log n) time. For reporting queries, since the leaves of each subtree can be
listed in time that is proportional to the number of leaves in the tree (a basic fact about
binary trees), it follows that the total time in the search is O((log n) + k), where k is the
number of points reported.

In summary, 1-dimensional range queries can be answered in O(log n) (counting) or ((log n)+
k) (reporting) time, using O(n) storage. This concept of finding maximal subtrees that are
contained within the range is fundamental to all range search data structures. The only
question is how to organize the tree and how to locate the desired sets. Let see next how can
we extend this to higher dimensional range queries.

kd-trees: The natural question is how to extend 1-dimensional range searching to higher dimen-
sions. First we will consider kd-trees. This data structure is easy to implement and quite
practical and useful for many different types of searching problems (nearest neighbor searching
for example). However it is not the asymptotically most efficient solution for the orthogonal
range searching, as we will see later.

Our terminology is a bit nonstandard. The data structure was designed by Jon Bentley. In
his notation, these were called “k-d trees,” short for “k-dimensional trees”. The value k was
the dimension, and thus there are 2-d trees, 3-d trees, and so on. However, over time, the
specific value of k was lost. Our text uses the term “kd-tree” rather than “k-d tree.” By the
way, there are many variants of the kd-tree concept. We will describe the most commonly
used one, which is quite similar to Bentley’s original design. In our trees, points will be stored
only at the leaves. There are variants in which points are stored at internal nodes as well.

A kd-tree is an example of a partition tree. For each node, we subdivide space either by
splitting along the x-coordinates or along the y-coordinates of the points. Each internal node
u of the kd-tree is associated with the following quantities:

u.cut-dim the cutting dimension (e.g., x = 0 and y = 1)
u.cut-val the cutting value (a real number)
u.weight the number (or generally, total weight) of points in u’s subtree

In dimension d, the cutting dimension may be represented as in integer ranging from 0 to
d− 1. If the cutting dimension is i, then all points whose ith coordinate is less than or equal
to u.cut-val are stored in the left subtree and the remaining points are stored in the right
subtree (see Fig. 3). If a point’s coordinate is equal to the cutting value, then we may allow
the point to be stored on either side. This is done to allow us to balance the number of points

Lecture 14 4 Fall 2023



CMSC 754 Dave Mount

in the left and right subtrees if there are many equal coordinate values. When a single point
remains (or more generally a small constant number of points), we store it in a leaf node,
whose only field u.point is this point.
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Fig. 3: (a) Point set and kd-subdivision, (b) kd-tree structure, and (c) example of node cells.

The cutting process has a geometric interpretation. Each node of the tree is associated
implicitly with a rectangular region of space, called a cell. (In general these rectangles may
be unbounded, but in many applications it is common to restrict ourselves to some bounded
rectangular region of space before splitting begins, and so all these rectangles are bounded.)
The cells are nested in the sense that a child’s cell is contained within its parent’s cell. Hence,
these cells define a hierarchical decomposition of space (see Fig. 3(a)).

There are two key decisions in the design of the tree.

How is the cutting dimension chosen? The simplest method is to cycle through the di-
mensions one by one. (This method is shown in Fig. 3.) Since the cutting dimension
depends only on the level of a node in the tree, one advantage of this rule is that the
cutting dimension need not be stored explicitly in each node, instead we keep track of
it while traversing the tree.

One disadvantage of this splitting rule is that, depending on the data distribution, this
simple cyclic rule may produce very skinny (elongated) cells, and such cells may adversely
affect query times. Another method is to select the cutting dimension to be the one along
which the points have the greatest spread, defined to be the difference between the largest
and smallest coordinates. Bentley call the resulting tree an optimized kd-tree.

How is the cutting value chosen? To guarantee that the tree has height O(log n), the
best method is to let the cutting value be the median coordinate along the cutting
dimension. If there is an even number of points in the subtree, we may take either the
upper or lower median, or we may simply take the midpoint between these two points.
In our example, when there are an odd number of points, the median is associated with
the left (or lower) subtree.

A kd-tree is a special case of a more general class of hierarchical spatial subdivisions, called
binary space partition trees (or BSP trees) in which the splitting lines (or hyperplanes in
general) may be oriented in any direction.
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Constructing the kd-tree: It is possible to build a kd-tree in O(n log n) time by a simple top-
down recursive procedure. The most costly step of the process is determining the median
coordinate for splitting purposes. One way to do this is to maintain two lists of pointers to
the points, one sorted by x-coordinate and the other containing pointers to the points sorted
according to their y-coordinates. (In dimension d, d such arrays would be maintained.) Using
these two lists, it is an easy matter to find the median at each step in constant time. In linear
time it is possible to split each list about this median element.

For example, if x = s is the cutting value, then all points with px ≤ s go into one list and
those with px > s go into the other. (In dimension d this generally takes O(d) time per point.)
This leads to a recurrence of the form T (n) = 2T (n/2) + n, which solves to O(n log n). Since
there are n leaves and each internal node has two children, it follows that the number of
internal nodes is n− 1. Hence the total space requirements are O(n).

Theorem: Given n points, it is possible to build a kd-tree of height O(log n) and space O(n)
in time O(n log n) time.

Range Searching in kd-trees: Let us consider how to answer orthogonal range counting queries.
Range reporting queries are an easy extension. Let Q denote the desired range, and u denote
the current node in the kd-tree. We assume that each node u is associated with its cell,
denoted u.cell, which is the associated rectangular region in the hierarchical subdivision.
(Cells can either be computed as part of preprocessing or computed on the fly as the algorithm
is running.) The search algorithm is presented in the code block below.

kd-tree Range Counting Query
int rangeCount(Range Q, KDNode u) {

if (u.isLeaf) // hit the leaf level?

if (u.point in Q) return u.weight // count if point lies in range

else return 0

else // u is internal

if (u.cell does not overlap Q) // disjoint?

return 0

else if (u.cell is contained in Q) // contained in Q?

return u.weight // return total subtree weight

else return

rangeCount(Q, u.left) + // count left side

rangeCount(Q, u.right) // ...and right side

}

The search algorithm traverses the tree recursively. If it arrives at a leaf cell, we check to
see whether the associated point, u.point, lies within Q in O(1) time, and if so we count it.
Otherwise, u is an internal node. If u.cell is disjoint from Q (which can be tested in O(1)
time since both are rectangles), then we know that no point in the subtree rooted at u is in
the query range, and so there is nothing to count. If u.cell is entirely contained within Q
(again testable in O(1) time), then every point in the subtree rooted at u can be counted.
(These points constitute a canonical subset.) Otherwise, u’s cell partially overlaps Q. In this
case we recurse on u’s two children and update the count accordingly.
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Fig. 4 shows an example of a range search. Blue shaded nodes contribute to the search result
and red shaded nodes do not. The red shaded subtrees are not visited. The blue-shaded
subtrees are not visited for the sake of counting queries. Instead, we just access their total
weight.
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Fig. 4: Range search in a kd-tree. (Note: This particular tree was not generated by the algorithm
describeds above.)

Analysis of query time: How many nodes does this method visit altogether? We claim that the
total number of nodes is O(

√
n) assuming a balanced kd-tree. Rather than counting visited

nodes, we will count nodes that are expanded. We say that a node is expanded if it is visited
and both its children are visited by the recursive range count algorithm.

A node is expanded if and only if the cell overlaps the range without being contained within
the range. We say that such a cell is stabbed by the query. To bound the total number of
nodes that are expanded in the search, it suffices to bound the number of nodes whose cells
are stabbed.

Lemma: Given a balanced kd-tree with n points using the alternating splitting rule, any
vertical or horizontal line stabs O(

√
n) cells of the tree.

Proof: Let us consider the case of a vertical line x = x0. The horizontal case is symmetrical.

Consider an expanded node which has a cutting dimension along x. The vertical line
x = x0 either stabs the left child or the right child but not both. If it fails to stab one
of the children, then it cannot stab any of the cells belonging to the descendents of this
child either. If the cutting dimension is along the y-axis (or generally any other axis in
higher dimensions), then the line x = x0 stabs both children’s cells.

Since we alternate splitting on left and right, this means that after descending two levels
in the tree, we may stab at most two of the possible four grandchildren of each node.
In general each time we descend two more levels we double the number of nodes being
stabbed. Thus, we stab the root node, at most 2 nodes at level 2 of the tree, at most
4 nodes at level 4, 8 nodes at level 6, and generally at most 2i nodes at level 2i. Each
time we descend a level of the tree, the number of points falls by half. Thus, each time
we descend two levels of the tree, the number of points falls by one fourth.

This can be expressed more formally as the following recurrence. Let T (n) denote the
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number of nodes stabbed for a subtree containing n points. We have

T (n) ≤
{

2 if n ≤ 4,
1 + 2T

(
n
4

)
otherwise.

We can solve this recurrence by appealing to the Master theorem for solving recurrences,
as presented in the book by Cormen, Leiserson, Rivest and Stein. To keep the lecture
self-contained, let’s solve it by repeated expansion.

T (n) ≤ 1 + 2T
(n
4

)
≤ 1 + 2

(
1 + 2T

(
n/4

4

))
= (1 + 2) + 4T

( n

16

)
≤ (1 + 2) + 4

(
1 + 2T

(
n/16

4

))
= (1 + 2 + 4) + 8T

( n

64

)
≤ . . .

≤
k−1∑
i=0

2i + 2kT
( n

4k

)
.

To get to the basis case (T (1)) let’s set k = log4 n, which means that 4k = n. Observe
that 2log4 n = 2(log2 n)/2 = n1/2 =

√
n. Since T (1) ≤ 2, we have

T (n) ≤ (2log4 n − 1) + 2log4 nT (1) ≤ 3
√
n = O(

√
n).

This completes the proof.

We have shown that any vertical or horizontal line can stab only O(
√
n) cells of the tree.

Thus, if we were to extend the four sides of Q into lines, the total number of cells stabbed by
all these lines is at most O(4

√
n) = O(

√
n). Thus the total number of cells stabbed by the

query range is O(
√
n). Since we only make recursive calls when a cell is stabbed, it follows

that the total number of expanded nodes by the search is O(
√
n), and hence the total number

of visited nodes is larger by just a constant factor.

Theorem: Given a balanced kd-tree with n points, orthogonal range counting queries can
be answered in O(

√
n) time and reporting queries can be answered in O(

√
n+ k) time.

The data structure uses space O(n).
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