Polygon Triangulation: Given a simple polygon P (that is, a simple, closed polygonal chain)...

- Simple polygon
- Not simple

Subdivide the interior of P into triangles (vertices drawn from P's vertices)

Notes:
- P given as a cyclic seq. of pts
- Vertices p_i and p_j are visible if open segment $p_ip_j \subseteq \text{int}(P)$
- If p_i and p_j visible, segment p_ip_j called a diagonal
Lemma: Given any n-vertex simple polygon ($n \geq 3$)
- A triangulation exists
- Any triangulation has $n-3$ diagonals
- Any triangulation has $n-2$ triangles

Dual Graph: A triangulation defines a graph:
Vertices \leftarrow triangles
Edges \leftarrow adjacent (share common edge)

The dual graph of a polygon triangulation is connected + acyclic \Rightarrow tree

History of Polygon Triangulation:
$O(n^2)$ - Easy (find a diagonal + recurse)
$O(n \log n)$ - We'll present this
$O(n)$ - Chazelle 1991 (very complicated!)
Two steps:
1. Decompose the polygon into (simpler) polygons.
 - Monotone polygons - $O(n \log n)$
2. Triangulate each monotone polygon - $O(n)$

Output: Graph structure, called a doubly-connected edge list (DCEL)

Def: A polygon is x-monotone if any vertical intersects the polygon in a single segment (if at all)

Monotone Decomposition - Add (non-intersecting) diagonals so that connected components are all x-monotone
Triangulating a Monotone Polygon:

General position: No duplicate x-coords (no vertical edges)

Reflex Vertex: Internal angle ≥ \(\pi \)

Reflex Chain: Sequence of reflex vertices

General approach: Sweep from left to right and triangulate as much as we can behind us.

What's the loop invariant?
Lemma: For $i \geq 2$, let v_i be the next vertex to process. The untriangulated region to left of v_i consists of two x-monotone chains starting from a common vertex u. One chain is a single edge, and the other is a reflex chain (of one or more edges).

For concreteness, let's assume reflex chain is on lower side.

Case 1: (v_i lies on upper chain)
- add diagonals between v_i and all vertices of the chain

[By monotonicity, all are visible to v_i]
Now $u = v_{i-1}$. Reflex chain has just one edge.
Case 2: \((v_i \text{ lies on lower chain})\)

2a: \((v_{i-1} \text{ is non-reflex})\)
 - connect \(v_i\) to all visible vertices on chain until hitting point of tangency. (Similar to Graham’s scan)
 [May go all the way back to \(u\)]

2b: \((v_{i-1} \text{ is reflex})\)
 - Add \(v_i\) to the chain

Correctness: Invariant holds after each iteration

Running time: \(O(n)\) [As in Graham, once a vertex is removed from the chain, it never reappears]
Monotone Subdivision:
Recall: Add diagonals to create x-monotone
where? Scan reflex vertex: Reflex vertex
where both edges on same side of
vertical line.

Add a diagonal to right side of each merge
left
split

Plane-sweep Approach:
Need auxiliary info to help with diagonals
For each edge e_a of sweep line with $\text{int}(L)$ below:

$\text{helper}(e_a) =$ rightmost vertically visible
vertex on or below e_a
to left of sweep line
Why is the helper helpful?

- When we see a split vertex, we add diagonal to helper of edge above

- When we see a merge vertex, it is the helper of edge above & we connect it to next vertex where helper(ea) changes

Events: Polygon vertices (sorted by x)

Sweep-line status: Edges intersecting the sweep line (ordered dictionary)

Event processing: There are many cases!

Utility:

\[
\text{fix-up}(v,e): \begin{cases}
\text{if (helper(e) is a merge vertex)} & \text{add diagonal v to helper(e)}
\end{cases}
\]
Split Vertex (v):
- \(e \leftarrow \text{edge above } v \text{ in sweep line} \)
- add diagonal \(v \) to helper(e)
- insert edges incident to \(v \) into sweep line
- letting \(e' \) be lower, set helper(e') \(\leftarrow v \)

Merge Vertex (v):
- Consider two edges incident to \(v \) + let \(e' \) be lower one
- Delete both from sweep line
- Let \(e \) be edge above \(v \)
- fix-up(v,e) + fix-up(v,e')

Start vertex (v):
- Insert \(v \)'s incident edges into sweep line
- Letting \(e \) be upper edge, helper(e) \(\leftarrow v \)

End vertex (v):
- Consider the two incident edges + let \(e \) be upper edge
- Delete both from sweep line
- fix-up(v,e)
Upper-chain vertex (v):
- Let e be edge to left, e' to right
- fix-up (v, e)
- Replace e with e' in sweep line
- helper(e') ← v

Lower-chain vertex (v):
- Let e be edge above
- fix-up (v, e)
- Let e' be edge to left, e'' to right
- Replace e' with e'' in sweep line