Halfplane Intersection:
Recall, each line in plane defines two halfspaces:
\[l: y = ax + b \]
\[h^+: y \geq ax + b \]
\[h^-: y \leq ax + b \]
A halfspace is an (unbounded) convex set.

Given a set of halfspaces: \(H = \{ h_1, \ldots, h_n \} \),
their intersection \(\bigcap_i h_i \) is a (possibly unbounded / possibly empty) convex polygon.

Bounded

Unbounded

Empty
Representing lines (and more):

\(\mathbb{R}^2 \) (Line) \hspace{1cm} \mathbb{R}^d \) (Hyperplane)

Explicit:
\[
y = ax + b
\]

Implicit:
\[
f(x, y) = ax + by + c
\]

Parametric:
\[
(x(t), y(t))
\]

\[
(\mathbf{r} \cdot \sin(t), \mathbf{r} \cdot \cos(t))
\]

Halfplane Intersection:

Given halfplanes \(H = \{h_1, \ldots, h_n\} \) construct \(H = \bigcup_i h_i \)

Output: Sequence of edges

\[
\langle 5, 1, 4, 2, 7, 6, 3 \rangle
\]

Divide and Conquer Algorithm: \(\mathcal{O}(n \log n) \)

\[\text{Intersect}(H) \]

- if \(|H| = 1 \) return \(h_1 \) [single halfspace]
- else partition \(H \) \(\bigcup \)

\[
|H_i| \leq \frac{n}{2}
\]

\[I_1 \leftarrow \text{Intersect}(H_1); \quad I_2 \leftarrow \text{Intersect}(H_2) \]

return merge \((I_1, I_2) \) How?
How to merge? Plane sweep

- At most 4 segments hit sweep line
- \(\leq n_1 + n_2 \) end pt events
 \(n_i = |H_i| \)
- \(\leq 2(n_1 + n_2) \) intersection events
- Boundaries are already sorted

\(O(n_1 + n_2) \) time

Overall Running Time:

\[T(n) = 2T\left(\frac{n}{2}\right) + n \]

2 recursive calls on \(\frac{n}{2} \) halfspaces

\[= O(n \log n) \quad \text{[see, e.g., CLRS]} \]

Special Case: Lower/Upper Envelopes

Upper Envelope

Lower Envelope
Envelopes of lines ~ Hull of points
Related?

Point-Line Duality
Lines in \(\mathbb{R}^2 \) are a lot like points:

- **2 degrees of freedom**: \(y = ax + b \)

- **degeneracy**: \(p : (a, b) \)

- **incidence**: \(p = l_1 \cap l_2 \)
 Two lines meet at a point

- \(l = p_1 \cup p_2 \)
 Two points join to form a line

Dual Operator:

Given:
- point \(p = (a, b) \), \(a, b \in \mathbb{R} \)
- line \(l : y = cx - d \), \(c, d \in \mathbb{R} \)

Dual:
- \(p^* \) is the line \(y = ax - b \)
- \(l^* \) is the point \((c, d) \)
Observations:

- **Self-inverse:** $p^{**} = p$
 $l^{**} = l$
- **Incidence:** p lies on l iff l^* lies on p^*

Proof:

\[b = c \cdot a - d \quad \Leftrightarrow \quad d = a \cdot c - b \]

\[l : y = cx - d \]

\[l^* = (c, d) \]

\[p^* : y = ax - b \]

Order reversing: p lies above/ below l iff p^* passes below/ above l^*

Proof:

\[b > c \cdot a - d \quad \Leftrightarrow \quad d > a \cdot c - b \]

Degeneracy:

p_1, p_2, p_3 are collinear iff p_1^*, p_2^*, p_3^* are coincident
Hulls and Envelopes:

Lemma:
Given a set $P = \{p_1, \ldots, p_n\}$ in \mathbb{R}^2, the CCW order of points on P's upper/lower hull is same as left-right order of segments in P^*'s lower/upper envelope.

Proof: (Sketch)
Consider edge $p_i p_j$ on upper hull of $\text{conv}(P)$.

Let l be line $p_i p_j$ - All pts of P lie on or below l.

\iff (order reversal) - All lines of P^* pass on or above point l^*.

\iff l^* is vertex of lower envelope.