Linear Programming (LP):
- Fundamental optimization problem in \mathbb{R}^d
- Given a set of n linear constraints (halfspaces) $H = \{h_1, \ldots, h_n\}$
 \[h_i : a_i^T x_1 + \ldots + a_{i,d} x_d \leq b_i \]

$$\mathbb{R}^d$$

- Given a linear objective function
 \[f(\vec{x}) = c_1 x_1 + \ldots + c_d x_d = \vec{c}^T \vec{x} \]

LP: Find the vertex of the feasible polytope that maximizes the objective function

Feasible point that maximizes projected distance on \vec{c}
Matrix form:

Given \(c \in \mathbb{R}^d \) and \(n \times d \) matrix \(A \) and \(b \in \mathbb{R}^n \), find \(x \in \mathbb{R}^d \) to:

\[
\text{maximize: } c^T x \\
\text{subject to: } Ax \leq b
\]

3 Possible Outcomes:

- **Feasible**: An optimal pt exists (gen'l position: a unique vertex of feasible polytope)
- **Infeasible**: No solution because feasible polytope is empty
- **Unbounded**: No (finite) solution because feasible polytope is unbounded in direction of objective fn.
Example:

- Given two point sets $B + R$ in \mathbb{R}^2, find lines of max. vertical distance with B above both + R below both.

- Lines: $l^+: y = e \cdot x + f^+$, $l^-: y = e \cdot x + f^-$

- Constraints: $\forall p \in B$, $p_y \geq e \cdot p_x + f^+$ (above l^+)
 $\forall p \in R$, $p_y \leq e \cdot p_x + f^-$ (below l^-)

- Objective: maximize $\omega = f^+ - f^-$, LP in \mathbb{R}^3

Standard form: Find (e, f^+, f^-) to maximize $f^+ - f^- = (0, 1, -1) \cdot (e, f^+, f^-)$ subject to:

- $p_{ix} \cdot e + 1 \cdot f^+ + 0 \cdot f^- \leq p_{iy}$, $\forall p_i \in B$
- $-p_{jx} \cdot e + 0 \cdot f^+ - 1 \cdot f^- \leq -p_{jy}$, $\forall p_j \in R$
LP in constant-dimensional space

- Assume n is large
 - d is a constant
- We'll present a (randomized) algorithm with (expected) running time $O(d! n) = O(n)$

Incremental Approach:

Overview:

- Find d-halfspaces that define an initial vertex v_d (or report that LP is unbounded)
 - $O(dn)$ time (see our text)
- Remove halfspace h_n and recursively compute LP on $n-1$ halfspaces h_1, \ldots, h_{n-1}
 - If infeasible return
 - Else let v_{n-1} be opt
- Add back h_n
 - If $(v_{n-1} \in h_n)$ return v_{n-1}
 - Else ...
Lemma: If \(v_{n-1} \neq h_n \) then new opt vertex \((v_n) \) lies on the hyperplane bounding \(h_n \).

Proof: Let \(h_n \) be hyperplane bounding \(h_n \). Assume \(c \) directed downwards.

\[
\begin{align*}
\text{if } v_{n-1} & \text{ not feasible } \Rightarrow \text{ below } h_n \\
\text{if } v_n & \text{ if not on } h_n \Rightarrow \text{ above } h_n \\
\end{align*}
\]

Let \(p = h_n \cap \overline{v_{n-1}v_n} \)

By convexity, \(p \in \text{feasible polytope} \)
By linearity, obj. function gets progressively worse from \(v_{n-1} \rightarrow v_n \)

\(p \) is better solution than \(v_n \)
\(\times \) contradiction!

How to update?

1. Intersect \(h_1, \ldots, h_{n-1} \) with \(h_n \) + project \(c \) \[Yields an LP in \(\mathbb{R}^{d-1} \) with \(n-1 \) constraints\]
2. Solve this \((d-1) \)-dim LP recursively (If \(d = 1 \), solve by brute force \(O(n) \))
3. "Unproject" solution back onto \(h_n \)

(See latex notes for details)
Running time? Pretty bad - \(O(n^d) \)
- Let \(W_d(n) \) be worst-case complexity for \(n \) halfspaces in dim \(d \)
- Recurrence:
 \[
 W_d(n) = W_d(n-1) + d + [dn + W_{d-1}(n-1)]
 \]

 Claim: \(W_d(n) = O(n^d) \)

 Too slow!

How to fix this?

Easy! Randomize the choice of \(h_n \)

Why?

\[
W_d(n) = W_d(n-1) + d + dn + W_{d-1}(n-1)
\]

This solves to \(O(n) \)

Only applies if \(v_{n-1} \& h_n \)

This rarely happens!

Randomized Incremental Algorithm

Input: \(H = \{ h_1, \ldots, h_n \} \) constraint halfspaces in \(\mathbb{R}^d \)
\(c \in \mathbb{R}^d \) objective vector

Output: Optimum vertex \(v \) or error \{ infeasible \}
(1) If \(d = 1 \) solve LP by brute force \(- \mathcal{O}(n)\)
(2) Find initial subset \(\{h_1, ..., h_d\} \) that provide
 initial optimum \(v_d \) (or return "unbounded")
 \(- \mathcal{O}(d \cdot n) \) (see text)
(3) Randomly select halfspace from \(\{h_{d+1}, ..., h_n\} \)
 call it \(h_n \). Recursively solve LP on remaining
 \(n-1 \) halfspaces \(\rightarrow \) Let \(v_{n-1} \) be result
(4) If \((v_{n-1} \in h_n) \) return \(v_{n-1} \) \(\rightarrow \mathcal{O}(d) \)
(5) else, project \(\{h_1, ..., h_{n-1}\} \) + \(c \) onto \(h_n \) \(\rightarrow \mathcal{O}(dn) \)
 the bounding hyperplane for \(h_n \).
 Solve recursively, letting \(v_n \) be result. Return \(v_n \)

Expected Case Running Time:
- Running time depends on (random) choice, \(h_n \)
- Let \(T_d(n) \) be the expected-case running
 time, over all choices of \(h_n \).
- Let \(p_n = \text{probability that } v_{n-1} \in h_n \)
- To simplify, assume all halfspaces
 chosen randomly (\(h_1, ..., h_d \) aren’t)
Recurrence:

\[T_d(n) = \begin{cases}
1 & \text{if } n = 1 \\
2 & \text{if } d = 1 \\
T_d(n-1) + d + p_n (dn + T_{d-1}(n-1)) & \text{otherwise}
\end{cases} \]

(3) Recursively compute \(V_{n-1} \)
(4) Test if \(V_{n-1} \in h_{n} \)
(5) If not, project \(h_1, \ldots, h_{n-1} \) onto \(h_n \)
(5) Solve \(d-1 \) dLinLP on projections

What is \(p_n \)? Backwards Analysis

- Let's consider the final configuration and ask - which halfspace came last and how does its choice affect things?
Obs: The optimum is determined by \(d\) halfspaces (assuming gen'l position)

- If \(h_n\) is any of these, \(v_{n-1} \cap h_n + v_n \neq v_{n-1}\)
- Otherwise, \(v_{n-1} \in h_n + v_n = v_{n-1}\)

\[p_n = \frac{d}{n} \quad \text{If } n \gg d, \text{ } p_n \text{ very small} \]
\[\text{+ bad case unlikely} \]

Why is it called "backwards"?
- We consider final config. and look backwards to our last random choice

Lemma: \(T_d(n) \leq \gamma_d d! n\), where \(\gamma_d\) is a constant depending on dimension

Proof: Induction on \(n+d\)

\[T_d(n) = T_d(n-1) + d + p_n (dn + T_{d-1}(n)) \]

by I.H. \(\leq \gamma_d d! (n-1) + d + \frac{d}{n} (d \cdot n + \gamma_{d-1} (d-1)! n) \)

+ def of \(p_n\)
\[= \gamma_d \cdot d! \cdot (n-1) + d + (d^2 + \gamma_{d-1} d!) \]

\[= \gamma_d \cdot d! \cdot n + (d + d^2 + \gamma_{d-1} d! - \gamma_d d!) \]

want:
\[\leq \gamma_d \cdot d! \cdot n \]

Suffices to select \(\gamma_d \) such that
\[d + d^2 + \gamma_{d-1} d! - \gamma_d d! \leq 0 \]

\[\Leftrightarrow d! \gamma_d \geq d + d^2 + \gamma_{d-1} d! \]

We can satisfy this by setting:
\[\gamma_1 = 1 \]
\[\gamma_d \leftarrow \frac{d + d^2}{d!} + \gamma_{d-1} \]

\[\implies \gamma_d \text{ is a constant depending on } d \text{ and } n \]

Summary:
- Randomized algorithm for LP
- Expected run time of LP is \(O(d! \cdot n) = O(n) \)
 (since we assume \(d \) is constant)
- Variation depends on random choices, not input
- (Seidel) Prob of running slower extremely small
A Bit of History (Optional)

1940s: Used in operations research (Econ, Business)
 Kantorovich, Dantzig, von Neuman

Dantzig - Simplex algorithm (1947)
 - Fast in practice
 - Exponential in worst case
 - Feasible polytope may have $O(n^{1.2})$ vertices
 - Karp - Not known to be NP-hard

Khachiyan - Ellipsoid Algorithm (1979)
 - (Weakly) polynomial time
 - Time depends on precision
 - Compute smaller and smaller ellipsoids containing optimum

Karmarkar - Interior-Point Methods (1984)
 - Move through polytope’s interior
 - (Weakly) polynomial
 - Practical

Open - Is there a poly. time (purely combinatorial) algorithm?