Range Searching: (Data structure problem)
- Given a point set \(P = \{ p_1, \ldots, p_n \} \subset \mathbb{R}^d \)
- Given a class of shapes (e.g., rectangles, balls, triangles, halfspaces)
- Build a data structure so that:
 - Given any query region \(Q \) from the class, quickly identify the points of \(P \) in \(Q \)

- Points (data structure) is (relatively) static
- Queries must be answered fast! (sublinear time)

\[P + \text{shape = rectangles} \]
What types of Queries?

- **Emptiness**: Any pts of \(P \) in \(Q \)?

- **Counting**: How many? \(|P \cap Q| \)

- **Weighted count**: Each \(p \in P \) has weight \(w(p) \). Return total weight \(\sum_{p \in P \cap Q} w(p) \)

- **Semigroup weight**: Any commutative + associative function of wts:

 \[\text{Eg. Max-query: } \max_{p \in P \cap Q} w(p) \]

- **Reporting**: List the pts of \(P \cap Q \)

- **Top-k**: List just the highest \(k \) pts of \(P \cap Q \) based on weights
Complexity Bounds:

Space: Total space needed to store points + data structure

Query time: Time needed to answer a query

Construction time: Time to build structure

Common: (Space bound) \(O(\log n) \)

Gold standard:
\(O(n) \) space
\(O(\log n) \) query time
\(O(n \log n) \) constr. time

Many geometric structures are \textbf{inferior} w.r.t. space:
\(O(n \log^2 n) \)
\(O(n \log^d n) \) in \(\mathbb{R}^d \)
\(O(n^2) \)

or \textbf{Query time}:
\(O(\log^2 n) \)
\(O(\sqrt{n}) \)
\(O(n^{1-\frac{1}{d}}) \) in \(\mathbb{R}^d \)
Orthogonal Range Queries:

Query region is \textbf{axis-aligned rectangle}

Eg. Given pts \(a, b \in \mathbb{R}^d\) s.t. \(a_i < b_i \ \forall i\)

\[
Q(a, b) = \{ p \in \mathbb{R}^d \mid a_i \leq p_i \leq b_i \}
\]

= \([a_1, b_1] \times \ldots \times [a_d, b_d]\)

Common in database queries:

How many patients with age \(\in [25, 35]\)
weight \(\in [100, 200]\)
blood pressure \(\in [80, 120]\)
General approach to answering range queries:

- Too slow to count pts one by one
- Too much space to precompute answer to every possible query

- Canonical subsets:
 Carefully select an (ideally small) collection of subsets of P so that the answer to any query can be formed as (disjoint) union of a small number of subsets.

Example: 1-dimensional range query

$P = p_1 < p_2 < \ldots < p_n$ in \mathbb{R}

- Store P as leaves of a balanced tree
- Leaves of each subtree form canonical set
The answer to any 1-dim range query can be expressed as the disjoint union of $O(\log n)$ canonical subsets.

Example: $Q = [x_{lo}, x_{hi}] = [2, 23]$

$P \cap Q = \{3, 5\} \cup \{1, 3, 11\} \cup \{9, 12, 14, 15\} \cup \{17, 20\} \cup \{22\}$

- Cover the range with maximal subtrees
- Take union of the associated canonical subsets
- $O(\log n)$ subtrees always suffice.
- $O(n)$ nodes \Rightarrow $O(n)$ canonical subsets

Compose the Answer to Query from Subsets:

Counting query: Node stores # of leaves
Weighted count: Node stores total weight of leaves
Max query: Node stores max of all weights in leaves

Can answer queries in $O(\log n)$ time by combining subtree results (assuming you can identify the canonical subsets for query and precompute info.)
kd-Trees: A natural generalization of 1-d trees to higher dim

1-d tree, 2-d tree, ..., k-d tree

Jon Bentley (1975)

Numerous variants - we present one

- Assume have large bounding box \(B \) containing \(P \)

- Recursively split space by axis-orthogonal hyperplane

cutting dimension: which axis

cutting value: where to cut

Spatial subdivision

Tree structure

Cell: Each tree node represents a rectangular region
Design choices:
- Where are points stored?
 - internal nodes (used for splitting)
 - external nodes (leaves)
 - Permits more flexibility in where to split
- How is cutting dim chosen?
 - alternate: $x,y,x,y,...$ or $x,y,z,x,y,z,...$
 - select based on point distribution
- How is cutting value chosen?
 - median (balanced height)
 - mid pt (geom. balanced)

Our structure:
- Points stored at leaves (external nodes)
- Alternate splitting axes
- Split at median
Construction:

Tree can be built in \(O(n \log n) \) time

\[
T(n) = n + 2T\left(\frac{n}{2}\right) \quad \text{find median splitting coord recursively build subtrees}
\]

\[= O(n \log n) \]

Slight improvement: Presort the points \(d \) times into \(d \) lists - one for each coordinate + cross-link entries

- Faster in practice

Space: \(O(n) \)

- \(n \) leaves (one per point)
- \((n-1) \) internal nodes
- \(O(1) \) info per per node

Range Search:

Key: If node's cell does not overlap \(Q \rightarrow \) Don't visit

If node's cell completely in \(Q \rightarrow \) count all its pts
Algorithm: Weighted range count in kd-tree

\[
\text{range-count}(\text{Rect } Q, \text{ KdNode } u) \\
\text{if (} u \text{ is leaf) } \\
\quad \text{if (} u.\text{point} \in Q \text{) return } u.\text{point}.\text{weight} \\
\quad \text{else return } 0 \\
\text{else (} u \text{ is internal) } \\
\quad \text{if (} u.\text{cell} \cap Q = \emptyset \text{) } \\
\quad \quad \text{return } 0 \text{ (no overlap) } \\
\quad \text{else if (} u.\text{cell} \subseteq Q \text{) } \\
\quad \quad \text{return } u.\text{weight} \text{ (total weight) } \\
\quad \text{else } \\
\quad \quad \text{return range-count}(Q, u.\text{left}) + \text{range-count}(Q, u.\text{right})
\]
Example:

Query Time:

Thm: Given a height-balanced kd-tree in \mathbb{R}^2 using alternating splitting axes, orthogonal counting queries can be answered in $O(\sqrt{n})$ time.

[Reporting queries in time $O(k + \sqrt{n})$, where $k = \#$ of points reported.]

Proof: Query rectangle bounded by 4 lines

We’ll show that each line stabs

$\leq \sqrt{n}$ cells of tree $\Rightarrow O(4\sqrt{n})$
Key: Because we alternate cutting dim for every 2 levels of tree, any axis parallel line can stab at most 2 out of 4 grandchild cells.

Since we use balanced splitting:
- Parent has \(n \) pts
- Child has \(\frac{n}{2} \) pts
- Grandchild has \(\frac{n}{4} \) pts

\[T(n) = 2T\left(\frac{n}{4}\right) + 1 \]

- Recurse on 2 of 4 grandchildren
- Constant time per cell

\[= O(\sqrt{n}) \quad [\text{see lect. notes for details}] \]