
CMSC 433

Programming Language Technologies and

Paradigms

Introduction

1CMSC433 Fall 2024

CMSC433 History

CMSC433 used to be a study of Concurrent programming.

 Now it is on program verification.

2

Software is everywhere

3

Software has bugs

A software bug is a defect in a computer program or system
that causes an undesired result.

4

Build Better Software

We test software to check whether software satisfies expectations.

Testing can show errors but not their absence.

Software errors in critical systems can cause major disasters.

This course is an introduction to techniques to get certainty that your

program does what it is supposed to do.

5

Course logistics

Lectures every M/W 9:30-10:45am EST

5 assignments (assignment 1 released)

1 midterms 10/23 (Wednesday)

Final exam: 12/??/2024

Several surveys and quizzes (on ELMS)

6

Key resources

Class web page (syllabus, assignments, course notes)

• https://www.cs.umd.edu/class/fall2024/cmsc433/

ELMS (announcements, grades)

Piazza (communication, discussion)

Gradescope (assignments, exams)

Office Hours

7

https://www.cs.umd.edu/class/fall2024/cmsc433/

Course Structure

Topics:

• Testing

• Dafny

• SAT solving and its applications

• Solver aided programming

• Computer aided theorem proving

• Supplementary reading

8

Testing

CMSC433 Fall 2024 9

Cost of Software Errors

$2.8 Trillion in 2020 alone

Source: Forbes

https://www.forbes.com/councils/forbestechcouncil/2023/12/26/costly-code-

the-price-of-software-errors/

10

Cost of Software Errors

estimated 50% of programmers time spent on finding

and fixing bugs.

11

Software failure examples: 2024 CrowdStrike

incident

12

On July 19th 2024, CrowdStrike

distributed a faulty update to its Falcon

Sensor security software that caused

widespread problems with Microsoft

Windows.

Roughly 8.5 million systems crashed

and were unable to properly restart.

The worldwide financial damage has

been estimated to be at least US $10

billion.

Nobody travels on 07/19

13

Nobody travels on 07/19

14

Software failure examples: Ariane flight V88

15

Ariane flight V88 (Ariane 5 rocket)

exploded right after launch in 1996.

Conversion of 64-bit float to 16-bit

integer caused an exception (made it

crash)

European space agency spent 10

years and $7 billion to produce Ariane

5

Software failure examples: Pentium Floating
Point (FDIV) Bug

• Incorrect result through floating point division

• Rarely encountered in practice

• 1 in 9 billion floating point divides with random parameters

would produce inaccurate results (Byte magazine)

• 475 million dollars, reputation of Intel.

16

A hardware bug affecting the floating-point unit

(FPU) of the early Intel Pentium processors in 1994.

Zune Leap Year Freeze

17

BOOL ConvertDays(UINT32 days, SYSTEMTIME* lpTime){

 ...

 year = ORIGINYEAR; /* = 1980 */

 while (days > 365){

 if (IsLeapYear(year)){

 if (days > 366){

 days -= 366;

 year += 1;

 }

 }else{

 days -= 365;

 year += 1;

 }

 }

 ...

}

At midnight of December 31, 2008, all the millions of Zune 30

that Microsoft sold froze.

Not just economic loss: Toyota Unintended

Acceleration

• Bugs in electronic throttle control

system (2009).

• Car kept accelerating on its own.

• May have caused up to 89 deaths

in accidents.

• Recalls of 10 million vehicles.

18

Not just economic loss, Therac-25

• a computer-controlled

radiation therapy machine
(1985-1987)

• some patients were given

massive overdoses of

radiation.

• Killed four and left two others

with lifelong injuries.

19

Problem Source

• Requirements: Incomplete, inconsistent, …

• Design: Flaws in design

• Implementation: Programming errors,…

• Tools: Defects in support systems and tools used

20

How can you get some assurance that a

program does what you want it to do?

21

How can you get some assurance that a

program does what you want it to do?

• Testing

• Pair programming

• Code review

• Formal verification

Usually, more assurance = more effort

22

Testing

Evaluating software by observing its execution

Execute program with the intent of finding failures (try

out inputs, see if outputs are correct)

23

Formal verification

Determine whether a piece of software fulfils a set of

formal requirements in every execution

• Formally prove method correct (find evidence of

absence of failure)

24

Some failures are obvious

obviously wrong output/behavior

• non-termination

• crash

• freeze

. . . but most are not!

In general, what constitutes a failure, is defined by: a

specification!

25

Specification

Specification: An unambiguous description of what a

program should do.

Bug: Failure to meet specification.

Unclear Specification leads to failure

26

Specification: Example

Sort(src: Integer Array) -> Integer Array

Specification:

• Requires: src is an array of integer

• Ensures: returns a sorted array

Is this a good specification?

27

Specification: Example

Sort(src: Integer Array) -> Integer Array

Specification:

• Requires: src is an array of integer

• Ensures: returns a sorted array

Sort([3,1,4,5]) == []

Sort([3,1,4,5]) == [1,2,3]

28

Specification: Example

Sort(src: Integer Array) -> Integer Array

Specification:

• Requires: src is an array of integer

• Ensures: returns a sorted array with only elements

from the input

Sort([3,1,4,5]) == [1,1,4]

Sort([3,1,4,5]) == [1,3,3,5]

29

Specification: Example

Sort(src: Integer Array) -> Integer Array

Specification:

• Requires: src is an array of integer

• Ensures: returns a permutation of src that is sorted

Sort([]) == ?

Sort(null) == ?

Permutation?

30

Specification: Example

Sort(src: Integer Array) -> Integer Array

Specification:

• Requires: src is a non-null array of integer

• Ensures: returns a permutation of src that is sorted

31

method m()

Requires: Precondition

Ensures: Postcondition

Means:

• If a caller of m()fulfills the required Precondition, then

the callee m() ensures that the Postcondition holds

after m() finishes.

• Garbage in, garbage out

32

Specification of a method

Failure vs Correctness

What constitutes a failure

A method fails when it is called in a state fulfilling the

required precondition of its contract and it does not

terminate in a state fulfilling the postcondition to be

ensured.

33

Failure vs Correctness

• A method is correct means:

• whenever it is started in a state fulfilling the required

precondition, then it terminates in a state fulfilling the

postcondition to be ensured.

• Correctness amounts to proving absence of failures! A

correct method cannot fail!

34

How do we test?

Test: try out inputs, see if outputs are correct

Testing means to execute a program with the intent of

detecting failure

This course: terminology, testing levels, unit testing,

black box vs white box, principles of test-set

construction/coverage, automated and repeatable

testing (JUnit)

35

Verification

Testing cannot guarantee correctness, i.e., absence of

failures

Verification: Mathematically prove method correct

• Goal: find evidence for absence of failures

This course: Formal verification (logics, tool support)

36

This course is an introduction to techniques to get certainty

that your program is correct (does what it is supposed to).

37

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2: CMSC433 History
	Slide 3: Software is everywhere
	Slide 4: Software has bugs
	Slide 5: Build Better Software
	Slide 6: Course logistics
	Slide 7: Key resources
	Slide 8: Course Structure
	Slide 9
	Slide 10: Cost of Software Errors
	Slide 11: Cost of Software Errors
	Slide 12: Software failure examples: 2024 CrowdStrike incident
	Slide 13: Nobody travels on 07/19
	Slide 14: Nobody travels on 07/19
	Slide 15: Software failure examples: Ariane flight V88
	Slide 16: Software failure examples: Pentium Floating Point (FDIV) Bug
	Slide 17: Zune Leap Year Freeze
	Slide 18: Not just economic loss: Toyota Unintended Acceleration
	Slide 19: Not just economic loss, Therac-25
	Slide 20: Problem Source
	Slide 21: How can you get some assurance that a program does what you want it to do?
	Slide 22: How can you get some assurance that a program does what you want it to do?
	Slide 23: Testing
	Slide 24: Formal verification
	Slide 25: Some failures are obvious
	Slide 26: Specification
	Slide 27: Specification: Example
	Slide 28: Specification: Example
	Slide 29: Specification: Example
	Slide 30: Specification: Example
	Slide 31: Specification: Example
	Slide 32: Specification of a method
	Slide 33: Failure vs Correctness
	Slide 34: Failure vs Correctness
	Slide 35: How do we test?
	Slide 36: Verification
	Slide 37

