
CMSC 433

Programming Language Technologies and

Paradigms

Testing

1CMSC433 Fall 2024

Program testing can be used to show the

presence of bugs, but never to show their

absence!

2

Edsger W. Dijkstra

“Software testers always go to heaven; they’ve already

had their fair share of hell.”

 (Anonymous)

3

Tony Hoare

There are two ways of constructing a

software design: One way is to make

it so simple that there are obviously no

deficiencies, and the other way is to

make it so complicated that there are

no obvious deficiencies. The first

method is far more difficult.

4

Simple Hashmap

5

let empty v = fun _-> 0;;

let update m k v = fun s->if k=s then v else m s

let m = empty 0;;

let m = update m "foo" 100;;

let m = update m "bar" 200;;

let m = update m "baz" 300;;

m "foo";; (* 100 *)

m "bar";; (* 200 *)

let m = update m "foo" 101;;

m "foo";; (* 101 *)

Testing is important

• Estimated 50% of programmers time spent on finding and

fixing bugs.

• Testing is not the only, but the primary method that

industry uses to evaluate software under development.

6

Testing is important

• Ideas and techniques of testing have become essential

knowledge for all software developers.

• Expect to use the concepts presented here many times

in your career.

• A few basic software testing concepts can be used to

design tests for a large variety of software applications.

7

8

Testing Scale

Unit testing: testing individual classes/functions

Integration Testing: testing packages/ subsystems

System tests: testing the entire system

9

Unit Test Example: https://github.com/cedar-

policy/cedar/blob/main/cedar-policy-

core/src/evaluator.rs

https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs

V Model

10

There are many variants

Testing Process

Test first: Test driven development (TDD)

• Write tests before the code

• Write the code to pass the test

Test after

• Check whether existing code passes the tests

Iteration

• Retesting

• Refactoring

11

Testing: Purpose

Functional testing

Performance Testing

Security testing

Usability testing

Availability testing

12

• a framework that repeatedly generates random

inputs, and uses them to confirm that properties hold

13

Property-based Testing

Repeatedly

generate input l

randomly
Confirm the property holds

for the given input

public void testList(List<String> l1) {

 List<String> l2 = l1.stream().collect(Collectors.toList());

 Collections.reverse(l2);

 Collections.reverse(l2);

 assertEquals(l1, l2);

}

QuickCheck: Property-Based Testing

• QCheck tests are described by

• A generator: generates random input

• A property: bool-valued function

14

Generate

Input
Property

(input)?

true

false

Fuzz Testing

Fuzz testing is a quality assurance technique

used to discover coding errors and security

loopholes in software, operating systems or

networks.

It involves inputting massive amounts of random

data, called fuzz, to the test subject in an attempt

to make it crash.

If a vulnerability is found, a software tool called a

fuzzer can be used to identify potential causes.

15

Mutation Testing

Mutation testing involves modifying a program in small

ways.

16

if (a && b)

 { c = 1; }

else

{ c = 0; }

The condition mutation operator would replace && with || and produce

the following mutant:
if (a || b)

 { c = 1; }

else

 { c = 0; }

Mutation Operators
Many mutation operators have been explored by researchers. Here

are some examples of mutation operators for imperative languages:

• Statement deletion

• Statement duplication or insertion, e.g. goto fail;

• Replacement of boolean subexpressions with true and false

• Replacement of some arithmetic operations with others, e.g. +

with *, - with /

• Replacement of some boolean relations with others, e.g. > with

>=, == and <=

• Remove method body

• …

17

Code coverage

Function coverage – Has each function been called?

Statement coverage – Has each statement been executed?

Branch coverage – Has each branch of each control structure

(such as in if and case statements) been executed?

Condition coverage (or predicate coverage) – Has each Boolean

sub-expression evaluated both to true and false?

Many more

18

Coverage Based Randomized Testing

19

Differential Testing

20

Input

Application

Oracle

output

output

Comparator

Property Based Testing

• Setting Up Junit-QuickCheck

• Maven

• Eclipse:

• Add the jar files

21

<dependency>
<groupId>com.pholser</groupId>
<artifactId>junit-quickcheck-core</artifactId>
<version>0.7</version>
</dependency>

@RunWith(JUnitQuickcheck.class)
public class PBT {
 @Property (trials = 1000)
 public void testList(List<String> l1) {
 List<String> l2 = l1.stream().collect(Collectors.toList());
 Collections.reverse(l2);
 Collections.reverse(l2);
 assertEquals(l1, l2);

 }
}

22

Let’s Test Our Property

Test 1000 times

...and tests the

property

Generates a random

string list

23

Buggy Reverse

Reverse(List<?> l){ return l} //returns the same list

reverse((reverse (l))) == l

The property did not catch the bug!

assertEquals (reverse ([1,2,3]), [3,2,1])

A simple unit test would catch the bug

24

Another Property

testRev (List<Integer>l1, Integer x, List<Integer l2){

 assertEquals(
 rev (l1 ++ [x] ++ l2) , rev l2 ++ [x] ++ rev l1

)

}

rev [1,2]++[3]@[4;5] = rev [4,5] ++ rev [3] ++ rev [1;2]

Junit-QuickCheck

25

• junit-quickcheck: Property-based testinga, JUnit-style

 github: https://github.com/pholser/junit-quickcheck

• Documentation:

• https://pholser.github.io/junit-quickcheck/site/1.0/

• Generator: random generators

• Shrink: Producing “smaller” values

• Seed: source of randomness

https://github.com/pholser/junit-quickcheck
https://pholser.github.io/junit-quickcheck/site/1.0/

Demo

26

https://github.com/anwarmamat/cmsc330/tree/master/ja

va/junit_quickcheck

https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2
	Slide 3
	Slide 4: Tony Hoare
	Slide 5: Simple Hashmap
	Slide 6: Testing is important
	Slide 7: Testing is important
	Slide 8
	Slide 9: Testing Scale
	Slide 10: V Model
	Slide 11: Testing Process
	Slide 12: Testing: Purpose
	Slide 13: Property-based Testing
	Slide 14: QuickCheck: Property-Based Testing
	Slide 15: Fuzz Testing
	Slide 16: Mutation Testing
	Slide 17: Mutation Operators
	Slide 18: Code coverage
	Slide 19: Coverage Based Randomized Testing
	Slide 20: Differential Testing
	Slide 21: Property Based Testing
	Slide 22: Let’s Test Our Property
	Slide 23: Buggy Reverse
	Slide 24: Another Property
	Slide 25: Junit-QuickCheck
	Slide 26: Demo

