CMSC 433 Programming Language Technologies and Paradigms

Hoare Logic

Hoare logic

Hoare logic (also known as Floyd– Hoare logic is a <u>formal system</u> with a set of logical rules for reasoning about the <u>correctness of computer</u> <u>programs</u>.

It is a style of **Axiomatic Semantics.**

Hoare Triple

▶ The central feature of **Hoare logic** is the **Hoare triple**.

- ▶ P is the precondition
- Q is the postcondition
- S is any statement

P and Q are assertions and S is a command

Hoare Triple Semantics

- If statement S begins execution in a state satisfying assertion P,
- and if s eventually terminates in some final state,
- then that final state will satisfy the assertion Q.

Hoare Triple Examples

{P} S {Q}

```
{x == 0} x := x + 1 {x == 1}
{x = 5} x := x * 2 { x = 10 }
{i > j} {i := i + 1; j := j + 1 } { i > j}
{0 <= x <= 15}

if x < 15 then x:= x+1 else x:=0

{0 <= x <= 15}</li>
```

Strongest Postconditions

{P} S {Q}

If $\{P\}$ S $\{Q\}$ and for all Q' such that $\{P\}$ S $\{Q'\}$, Q \Rightarrow Q', then Q is the strongest postcondition of S with respect to P

```
{x = 5} x := x * 2 {x = 10 | | x = 5}
{x = 10} \Rightarrow {x = 10 | | x = 5}
{x = 10} \text{ is stronger than } {x = 10 | | x = 5}
{x = 5} x := x * 2 { x = 10 }
```

Weakest Precondition

{P} S {Q}

If $\{P\}$ S $\{Q\}$ and for all P' such that $\{P'\}$ S $\{Q\}$, P' \Rightarrow P, then P is the weakest precondition wp(S,Q) of S with respect to Q

```
{x = 5 && y = 10}
{x < y && y > 0}
{x < y && x / y < 1}</li>
{y != 0 && x / y < 1}</li>
z := x / y { z < 1 }</li>
z := x / y { z < 1 }</li>
```

- All are true, but this one is the most useful because it allows us to invoke the program in the most general condition
- y != 0 && x / y < 1 is the weakest precondition

Preconditioning Strengthening (Consequence)

$$P_{s} \Rightarrow P_{w} \quad \{P_{w}\} S \{Q\}$$

$$\{P_{s}\} S \{Q\}$$

$$\{x \ge 0\} \quad x := x+1 \quad \{x \ge 0\}$$

$$x := 2 \Rightarrow x \ge 0$$

$$\{x = 2\} \quad x := x+1 \quad \{x \ge 0\}$$

Postcondition Weakening (Consequence)

$$\begin{array}{ccc} \{P\} \; S \; \{Q_s\} & Q_s \Rightarrow Q_w \\ \hline \\ \{P_s\} \; S \; \{Q_w\} \end{array}$$

{x ≥ 0} x:= x+1{x ≥ 0}
x ≥ 0 -> x ≥ -10
{x ≥ 0} x:= x+1{x ≥ -10}

Postcondition is true, but less useful

Consider the following Hoare triples:

```
A. { z = y + 1 } x := z * 2 { x = 4 }
B. { y = 7 } x := y + 3 { x > 5 }
C. { false } x := 2 / y { true }
D. { y < 16 } x := y / 2 { x < 8 }
E. {true} while true x :=x + 1; {false}</pre>
```

• Which of the Hoare triples above are valid?

Consider the following Hoare triples:

```
A. { z = y + 1 } x := z * 2 { x = 4 } Not valid
B. { y = 7 } x := y + 3 { x > 5 }
C. { false } x := 2 / y { true }
D. { y < 16 } x := y / 2 { x < 8 }
E. {true} while true x :=x + 1; {false}</pre>
```

Consider the following Hoare triples:

```
A. { y = 7 } x := y + 3 { x > 5 }
B. { false } x := 2 / y { true }
c. { y < 16 } x := y / 2 { x < 8 }</pre>
```

For which ones can you write a stronger postcondition? (Leave the precondition unchanged, and ensure the resulting triple is still valid)

Consider the following Hoare triples:

```
A. { y = 7 } x := y + 3 { x > 5 }
B. { false } x := 2 / y { true }
c. { y < 16 } x := y / 2 { x < 8 }</pre>
```

For which ones can you write a stronger postcondition? (Leave the precondition unchanged, and ensure the resulting triple is still valid)

- $A. \quad x = 10$
- B. false

Consider the following Hoare triples:

```
A. { y = 7 } x := y + 3 { x > 5 }
B. { false } x := 2 / y { true }
c. { y < 16 } x := y / 2 { x < 8 }</pre>
```

For which ones can you write a weaker precondition? (Leave the postcondition unchanged, and ensure the resulting triple is still valid)

- A. y > 2
- B. true

Hoare Logic Rules

Assignment:

```
{ Q[x := a] } x := a { Q }
{ ??? } x := x+1  {x \le N}
```

Hoare Logic Rules: Assignment

```
\{ Q[x := a] \} x := a \{ Q \}
\{\ ???\ \}\ x := x+1 \ \{x \le N\}
\{x \le N[x/x+1]\} = \{x+1 \le N\}
\{x+1 \leq N\} x := x+1 \{x \leq N\}
```

Assignment Example

- $\{P\} x := 3 \{x+y > 0\}$
 - What is the weakest precondition P?
- Assignment rule : { P[e/x] } x := e { P }

Assignment Example

- $\{P\} x := 3 \{x+y > 0\}$
 - What is the weakest precondition P?
- Assignment rule : { P[e/x] } x := e { P }

$$(x + y > 0)[3 / x]$$

= 3 + y > 0
= y > -3
• {y > -3 } x := 3 { x+y > 0 }

Assignment Example

```
\{ ??? \} x := x + y \{ x == 1 \}
```

If we replace the x in x == 1 with x + y, we get x + y == 1. It leads to a valid Hoare triple:

$$\{ x + y == 1 \} x := x + y \{ x == 1 \}$$

Hoare Logic Rules: Skip

Since empty statement blocks don't change the state, they preserve any assertion P:

$$\{x \ge 0\} \ x := x + 3; \ x := 2 * x \ \{x \ge 6\}$$

```
{x \ge 0}
x := x + 3;
{???}
x := 2 * x;
{x \ge 6}
```

```
\{x \geq 0\}
{???}
x := x + 3;
\{2 * x \ge 6\}
x := 2 * x;
\{x \geq 6\}
```

```
\{2 * (x+3) \ge 6\} \Rightarrow \{2x + 6 \ge 6\} \Rightarrow \{x \ge 0\}
x := x + 3;
\{2 * x \ge 6\}
x := 2 * x;
\{x \ge 6\}
```

Hoare Logic Rules: Conditionals

The same assertion Q holds after executing either of the branches.

```
{ true }
if x ≤ 0
    { y := 2 }
else
    { y := x + 1 }
{ x ≤ y }
```

Hoare Logic Rules: Conditionals

The same assertion Q holds after executing either of the branches.

```
{ true }
if x \leq 0
    { y := 2 }
else
    { y := x + 1 }
{ x \leq y }
{ true && ! (x \leq 0) } y := x+1 {x \leq y }
```

Hoare Logic Rules: Conditionals

The same assertion Q holds after executing either of the branches.

```
{P && b} s1 {Q} {P && !b} s2 {Q}
                {P} if b { s1 } else { s2 } {Q}
                           {true && x \le 0} y := 2 \{x \le y \}
{ true }
                           {true && ! (x \le 0)} y := x+1 \{x \le y\}
if x \leq 0
  \{ y := 2 \}
                                (x \le 0 \Rightarrow y == 2) \&\&
else
                               (! (x \le 0) \Rightarrow y == x + 1)
  \{ y := x + 1 \}
\{ \mathbf{x} \leq \mathbf{y} \}
                               x \leq y
```

Practice: Preconditions/Postconditions

Fill in the missing pre- or post-conditions with predicates that make each Hoare triple valid.

Practice: Preconditions/Postconditions

Fill in the missing pre- or post-conditions with predicates that make each Hoare triple valid.

```
A. \{x = y\} x := y * 2 \{x = y * 2 \}
B. \{x+3=z\} x := x+3 \{x=z\}
C. \{y * (x+1) = 2 * z \} x := x+1; y := y * x \{y=2 * z \}
D. \{x>0\} if \{x>0\} then \{y=x\} else \{y=0\}
```

Hoare Logic Rules: While loops

```
Correctness Conditions
P ⇒ Inv
The invariant is initially true
{ Inv && B } S {Inv}
Loop preserves the invariant
(Inv && !B) ⇒ Q
Invariant and exit implies postcondition
```

Hoare Logic Rules: While loops

if P is an invariant of s, then no matter how many times the loop body executes, s is going to be true when the loop finally finishes.

P must be strong enough to prove the postcondition and weak enough to be inferred from the precondition.

Practice: Loop Invariants

Consider the following program:

```
{ n >= 0 }
i := 0;
while (i < n) {
  i := n;
}
{i = n}</pre>
```

Which of the following loop invariants are correct? For those that are incorrect, explain why.

```
A. i = 0
B. i = n
C. n >= 0
D. i <= n
```

Practice: Loop Invariants

Consider the following program:

```
{ n >= 0 }
i := 0;
while (i < n) {
  i := n;
}
{i = n}</pre>
```

Which of the following loop invariants are correct? For those that are incorrect, explain why.

```
A. i = 0
B. i = n
C. n >= 0
D. i <= n
```

Loop Example

```
{ n >= 0}
j := 0;
s := 0;
while (j < n) {
    j := j + 1;
    s := s + a[j];
}
{ s = n * (n+1)/2} //0+1+2...n</pre>
```

Loop Example

```
\{ n >= 0 \}
\dot{j} := 0;
s := 0;
\{ s == j * (j*1)/2 \}
while (j < n) {
  \{s == j * (j*1)/2\}
  j := j + 1;
  s := s + a[j];
  \{s == j * (j*1)/2\}
\{ s = n * (n+1)/2 \} //0+1+2...n
```

Loop Example

```
\{ n >= 0 \}
j := 0;
s := 0;
Assert s == j * (j*1)/2;
while (j < n)
invariant s == j * (j+1)/2
  assert s == j * (j*1)/2;
  j := j + 1;
  s := s + a[j];
  assert s == j * (j*1)/2;
\{ s = n * (n+1)/2 \} //0+1+2...n
```